A163227 Fibonacci-accumulation sequence.
1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 8, 20, 13, 33, 21, 54, 34, 88, 55, 143, 89, 232, 144, 376, 233, 609, 377, 986, 610, 1596, 987, 2583, 1597, 4180, 2584, 6764, 4181, 10945, 6765, 17710, 10946, 28656, 17711, 46367, 28657, 75024, 46368, 121392, 75025, 196417
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,0,0,-1).
Programs
-
Magma
m:=55; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x-x^2)/(1-2*x^2+x^6))); // Vincenzo Librandi, Dec 12 2016 -
Mathematica
LinearRecurrence[{0, 2, 0, 0, 0, -1}, {1, 1, 1, 2, 2, 4}, 50] (* or *) CoefficientList[Series[x*(1 + x - x^2)/(1 - 2*x^2 + x^6), {x,1,50}], x] (* G. C. Greubel, Dec 11 2016 *)
-
PARI
Vec(x*(1 + x - x^2)/(1 - 2*x^2 + x^6) + O(x^50)) \\ G. C. Greubel, Dec 11 2016
Formula
a(n) = 2*a(n-2) - a(n-6), where a(1,2,3)=1.
G.f.: x*(1 + x - x^2)/(1 - 2*x^2 + x^6). - G. C. Greubel, Dec 11 2016
Comments