A163231 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1, 45, 1980, 87120, 3832290, 168577200, 7415481150, 326196882000, 14348955088710, 631190926398780, 27765226324720170, 1221354364616557380, 53725709508796162530, 2363320544672336677560, 103959241263364038810390
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..600
- Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, -946).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5) )); // G. C. Greubel, Apr 30 2019 -
Mathematica
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3-43*t^2 - 43*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {43, 43, 43, -946}, {45,1980,87120,3832290}, 20]] (* G. C. Greubel, Dec 11 2016 *) coxG[{4, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3 - 43*t^2-43*t+1)) \\ G. C. Greubel, Dec 11 2016
-
Sage
((1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
Formula
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
a(n) = 43*a(n-1)+43*a(n-2)+43*a(n-3)-946*a(n-4). - Wesley Ivan Hurt, May 06 2021
Comments