cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163232 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4190715, 188535600, 8482007160, 381596054400, 17167581467190, 772350369021000, 34747182860785560, 1563237055602189000, 70328294002955286540, 3163991615757072698400, 142344458748855549948960
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[46,2070,93150,4190715];; for n in [5..20] do a[n]:=44*(a[n-1] +a[n-2] +a[n-3]) -990*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^4)/(1-45*x+1034*x^4-990*x^5) )); // G. C. Greubel, May 01 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(990*t^4-44*t^3-44*t^2 - 44*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {44, 44, 44, -990}, {46,2070,93150,4190715}, 20]] (* G. C. Greubel, Dec 11 2016 *)
    coxG[{4, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(990*t^4-44*t^3 - 44*t^2-44*t+1)) \\ G. C. Greubel, Dec 11 2016
    
  • Sage
    ((1+x)*(1-x^4)/(1-45*x+1034*x^4-990*x^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
a(n) = 44*a(n-1)+44*a(n-2)+44*a(n-3)-990*a(n-4). - Wesley Ivan Hurt, May 10 2021