cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163259 Triangle T(n,k) read by rows: mod(A007318(n,k+1);A007318(n,k)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 5, 15, 6, 1, 0, 0, 0, 14, 0, 21, 7, 1, 0, 0, 4, 0, 14, 56, 28, 8, 1, 0, 0, 0, 12, 42, 0, 84, 36, 9, 1, 0, 0, 5, 30, 90, 42, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 132, 0, 330, 165, 55, 11, 1, 0, 0, 6, 22, 55, 297, 132, 792, 495
Offset: 1

Views

Author

Mats Granvik, Jul 23 2009

Keywords

Comments

The zeros in this table form the pattern of ones in A051731.

Examples

			Table begins:
0
0...0
0...1...0
0...0...1...0
0...2...4...1...0
0...0...0...5...1...0
0...3...5..15...6...1...0
0...0..14...0..21...7...1...0
0...4...0..14..56..28...8...1...0
0...0..12..42...0..84..36...9...1...0
0...5..30..90..42.210.120..45..10...1...0
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Mod[Binomial[n, k + 1], Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Dec 12 2016 *)

Formula

T(n, k) = mod(binomial(n, k + 1), binomial(n, k)), for 0 <= k <= n, n>= 0. - G. C. Greubel, Dec 12 2016

Extensions

Corrected the formula in the title Mats Granvik, Jul 24 2009

A215139 a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.

Original entry on oeis.org

5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
Offset: 6

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.

Examples

			From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    I:=[5,4,22,17,91,69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,7,0,-14,0,7}, {5,4,22,17,91,69}, {1,50}] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
    

Formula

G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012

Extensions

More terms from Michel Marcus, Apr 20 2016
Showing 1-2 of 2 results.