A163266 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1, 48, 2256, 106032, 4982376, 234118656, 11001086208, 516933992448, 24290397127896, 1141390199234256, 53633194222120752, 2520189436004377296, 118422087020288430408, 5564578001118314478240, 261475955285477822620512, 12286587622406034842484384, 577338880885792093267553208
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (46,46,46,-1081).
Programs
-
GAP
a:=[48,2256,106032,4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // G. C. Greubel, May 01 2019 -
Mathematica
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t,0,20}], t] (* or *) LinearRecurrence[ {46,46,46,-1081}, {1,48,2256,106032,4982376}, 20] (* G. C. Greubel, Dec 12 2016 *) coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ G. C. Greubel, Dec 12 2016
-
Sage
((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
Formula
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
a(n) = 46*a(n-1)+46*a(n-2)+46*a(n-3)-1081*a(n-4). - Wesley Ivan Hurt, May 10 2021
Comments