A163282 Triangle read by rows in which row n lists n+1 terms, starting with n^2 and ending with n^3, such that difference between successive terms is equal to n^2 - n.
0, 1, 1, 4, 6, 8, 9, 15, 21, 27, 16, 28, 40, 52, 64, 25, 45, 65, 85, 105, 125, 36, 66, 96, 126, 156, 186, 216, 49, 91, 133, 175, 217, 259, 301, 343, 64, 120, 176, 232, 288, 344, 400, 456, 512, 81, 153, 225, 297, 369, 441, 513, 585, 657, 729, 100, 190, 280, 370, 460, 550
Offset: 0
Examples
Triangle begins: 0; 1, 1; 4, 6, 8; 9, 15, 21, 27; 16, 28, 40, 52, 64; 25, 45, 65, 85, 105, 125; 36, 66, 96, 126, 156, 186, 216; 49, 91, 133, 175, 217, 259, 301, 343; 64, 120, 176, 232, 288, 344, 400, 456, 512; 81, 153, 225, 297, 369, 441, 513, 585, 657, 729; 100, 190, 280, 370, 460, 550, 640, 730, 820, 910, 1000;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Programs
-
Magma
/* As triangle: */ [[n^2+k*(n^2-n): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 13 2016
-
Mathematica
T[n_, k_] := n^2 + k*(n^2 - n); Table[T[n, k], {n,0,10}, {k,0,n}] //Flatten (* G. C. Greubel, Dec 13 2016 *) Join[{0,1},Table[Range[n^2,n^3,n^2-n],{n,10}]]//Flatten (* Harvey P. Dale, Sep 09 2019 *)
-
PARI
A163282(n,k)=n^2+k*(n^2-n) \\ Michael B. Porter, Feb 25 2010
Formula
T(n, k) = n^2 + k*(n^2 - n), for 0 <= k <= n, n>= 0. - G. C. Greubel, Dec 13 2016
Comments