A163287 Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1, 49, 2352, 112896, 5417832, 259999488, 12477267096, 598778820864, 28735144795560, 1378987562102976, 66177035471527512, 3175808211876089664, 152405705797427455464, 7313885981134376257152, 350990324575741067673624
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..590
- Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, -1128).
Programs
-
GAP
a:=[49,2352,112896,5417832];; for n in [5..20] do a[n]:=47*(a[n-1]+a[n-2] +a[n-3] -24*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-48*x+1175*x^4-1128*x^5) )); // G. C. Greubel, May 01 2019 -
Mathematica
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1128*t^4-47*t^3-47*t^2 - 47*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{47, 47, 47, -1128}, {1,49,2352,112896,5417832}, 20] (* G. C. Greubel, Dec 17 2016 *) coxG[{4, 1128, -47}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1128*t^4-47*t^3 - 47*t^2-47*t+1)) \\ G. C. Greubel, Dec 17 2016
-
Sage
((1+x)*(1-x^4)/(1-48*x+1175*x^4-1128*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
Formula
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
a(n) = 47*a(n-1)+47*a(n-2)+47*a(n-3)-1128*a(n-4). - Wesley Ivan Hurt, May 10 2021
Comments