cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163290 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5881225, 288120000, 14114940000, 691488000000, 33875854559400, 1659571130851200, 81302047554268800, 3982970548016611200, 195124905996721243200, 9559128916780140902400, 468299754871670360217600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t,0,50}], t] (* or *) Join[{1}, LinearRecurrence[ {48,48,48,-1176}, {50, 2450, 120050, 5881225}, 25]] (* G. C. Greubel, Dec 17 2016 *)
    coxG[{4,1176,-48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 22 2020 *)
  • PARI
    Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1) + O(t^50)) \\ G. C. Greubel, Dec 17 2016

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).