A163306 a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
1, 7, 53, 419, 3385, 27631, 226637, 1863083, 15331249, 126219415, 1039364261, 8559569267, 70494539113, 580587822079, 4781723152445, 39382455344891, 324356046412897, 2671416441263143, 22001959856357909, 181209608597137475
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-31).
Programs
-
Magma
[ n le 2 select 6*n-5 else 12*Self(n-1)-31*Self(n-2): n in [1..20] ];
-
Mathematica
LinearRecurrence[{12,-31}, {1,7}, 50] (* G. C. Greubel, Dec 18 2016 *)
-
PARI
Vec((1-5*x)/(1-12*x+31*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016
Formula
a(n) = ((5+sqrt(5))*(6+sqrt(5))^n + (5-sqrt(5))*(6-sqrt(5))^n)/10.
G.f.: (1-5*x)/(1-12*x+31*x^2).
E.g.f.: (1/5)*exp(6*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - G. C. Greubel, Dec 18 2016
Comments