cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163307 a(n) = 14*a(n-1) - 44*a(n-2) for n > 1; a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 68, 600, 5408, 49312, 452416, 4164096, 38391040, 354254336, 3270354944, 30197778432, 278873280512, 2575523676160, 23786907123712, 219693657980928, 2029087298289664, 18740701224894464, 173089976023777280
Offset: 0

Views

Author

Klaus Brockhaus, Jul 24 2009

Keywords

Comments

Binomial transform of A163306. Inverse binomial transform of A163308.

Crossrefs

Programs

  • Magma
    [ n le 2 select 7*n-6 else 14*Self(n-1)-44*Self(n-2): n in [1..19] ];
    
  • Mathematica
    LinearRecurrence[{14,-44}, {1,8}, 50] (* G. C. Greubel, Dec 18 2016 *)
  • PARI
    Vec((1-6*x)/(1-14*x+44*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016

Formula

a(n) = ((5+sqrt(5))*(7+sqrt(5))^n + (5-sqrt(5))*(7-sqrt(5))^n)/10.
G.f.: (1-6*x)/(1-14*x+44*x^2).
E.g.f.: (1/5)*exp(7*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - G. C. Greubel, Dec 18 2016

A163309 a(n) = 18*a(n-1) - 76*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

Original entry on oeis.org

1, 10, 104, 1112, 12112, 133504, 1482560, 16539776, 185041408, 2073722368, 23263855616, 261146501120, 2932583993344, 32939377795072, 370032416817152, 4157190790283264, 46706970546995200, 524778969784385536
Offset: 0

Views

Author

Klaus Brockhaus, Jul 24 2009

Keywords

Comments

Binomial transform of A163308. Inverse binomial transform of A163310.

Crossrefs

Programs

  • Magma
    [ n le 2 select 9*n-8 else 18*Self(n-1)-76*Self(n-2): n in [1..18] ];
    
  • Mathematica
    LinearRecurrence[{18,-76}, {1,10}, 50] (* G. C. Greubel, Dec 18 2016 *)
  • PARI
    Vec((1-8*x)/(1-18*x+76*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016

Formula

a(n) = ((5+sqrt(5))*(9+sqrt(5))^n + (5-sqrt(5))*(9-sqrt(5))^n)/10.
G.f.: (1-8*x)/(1-18*x+76*x^2).
E.g.f.: (1/5)*exp(9*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - G. C. Greubel, Dec 18 2016
Showing 1-2 of 2 results.