A163346 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
1, 7, 47, 309, 2009, 12983, 83623, 537621, 3452881, 22163527, 142219007, 912428949, 5853252329, 37546657463, 240841771063, 1544844588981, 9909085155361, 63559426007047, 407685301497167, 2614986216809589, 16773100233661049, 107586319349989943
Offset: 0
Links
- Matthew House, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-23).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+r)*(5+r)^n+(1-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009 -
Mathematica
CoefficientList[Series[(1 - 3 x)/(1 - 10 x + 23 x^2), {x, 0, 21}], x] (* Michael De Vlieger, Jun 30 2016 *) LinearRecurrence[{10,-23}, {1, 7}, 50] (* G. C. Greubel, Dec 19 2016 *)
-
PARI
Vec((1-3*x)/(1-10*x+23*x^2) + O(x^99)) \\ Altug Alkan, Jul 05 2016
Formula
a(n) = 10*a(n-1)-23*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((1+sqrt(2))*(5+sqrt(2))^n + (1-sqrt(2))*(5-sqrt(2))^n)/2.
G.f.: (1-3*x)/(1-10*x+23*x^2).
E.g.f.: (sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(5*x). - Ilya Gutkovskiy, Jun 30 2016
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
New name from G. C. Greubel, Dec 19 2016
Comments