A163350 a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
1, 6, 34, 188, 1028, 5592, 30344, 164464, 890896, 4824672, 26124832, 141453248, 765878336, 4146681216, 22451153024, 121555687168, 658129355008, 3563255219712, 19292230787584, 104452273224704, 565526954771456
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -14).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+r)*(4+r)^n+(1-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009 -
Mathematica
LinearRecurrence[{8,-14},{1,6},30] (* Harvey P. Dale, May 08 2014 *)
-
PARI
Vec((1-2*x)/(1-8*x+14*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016
Formula
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
a(n) = ((1+sqrt(2))*(4+sqrt(2))^n+(1-sqrt(2))*(4-sqrt(2))^n)/2.
G.f.: (1-2*x)/(1-8*x+14*x^2).
E.g.f.: exp(4*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
New name from G. C. Greubel, Dec 19 2016
Comments