A163420 Primes p such that p+(p^2-1)/4 is also prime.
3, 5, 7, 11, 17, 19, 29, 31, 37, 41, 47, 59, 61, 89, 107, 109, 127, 131, 139, 151, 191, 199, 227, 229, 239, 251, 281, 307, 317, 337, 347, 359, 367, 389, 397, 439, 449, 461, 479, 487, 491, 569, 587, 601, 617, 659, 661, 677, 701, 719, 727, 769, 809, 839, 911, 941
Offset: 1
Examples
3 is in the sequence because 3+(3^2-1)/4=5 is a prime number. 5 is in the sequence because 5+(5^2-1)/4=11 is a prime number.
Links
- J. Mulder, Table of n, a(n) for n = 1..50000
Programs
-
Magma
[p: p in PrimesInInterval(3,1000) | IsPrime(p+(p^2-1) div 4)]; // Vincenzo Librandi, Apr 08 2013
-
Mathematica
f[n_]:=((p+1)/2)^2+((p-1)/2); lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,6!}];lst Select[Range[700], PrimeQ[#] && PrimeQ[# + (#^2 - 1)/4] &] (* Vincenzo Librandi, Apr 08 2013 *) Select[Prime[Range[200]],PrimeQ[#+(#^2-1)/4]&] (* Harvey P. Dale, Jun 18 2014 *)
Formula
Extensions
Definition simplified by R. J. Mathar, Aug 17 2009