cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163420 Primes p such that p+(p^2-1)/4 is also prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 29, 31, 37, 41, 47, 59, 61, 89, 107, 109, 127, 131, 139, 151, 191, 199, 227, 229, 239, 251, 281, 307, 317, 337, 347, 359, 367, 389, 397, 439, 449, 461, 479, 487, 491, 569, 587, 601, 617, 659, 661, 677, 701, 719, 727, 769, 809, 839, 911, 941
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3+(3^2-1)/4=5 is a prime number.
5 is in the sequence because 5+(5^2-1)/4=11 is a prime number.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3,1000) | IsPrime(p+(p^2-1) div 4)]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    f[n_]:=((p+1)/2)^2+((p-1)/2); lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,6!}];lst
    Select[Range[700], PrimeQ[#] && PrimeQ[# + (#^2 - 1)/4] &] (* Vincenzo Librandi, Apr 08 2013 *)
    Select[Prime[Range[200]],PrimeQ[#+(#^2-1)/4]&] (* Harvey P. Dale, Jun 18 2014 *)

Formula

A163419(n) = a(n)+( a(n)^2-1 )/4. [R. J. Mathar, Aug 17 2009]
{A000040(k): A000040(k)+A024701(k-1) in A000040}.

Extensions

Definition simplified by R. J. Mathar, Aug 17 2009