A163427 Primes p such that (p+1)^3/8+(p-1)/2 is also prime.
5, 7, 13, 19, 29, 31, 41, 53, 71, 101, 103, 109, 173, 191, 199, 223, 229, 233, 239, 257, 269, 277, 331, 383, 397, 431, 491, 569, 571, 599, 619, 631, 719, 733, 751, 757, 761, 823, 857, 859, 863, 887, 907, 937, 967, 971, 977, 1009, 1019, 1063, 1069, 1123, 1163
Offset: 1
Examples
For p=5, (5+1)^3/8+(5-1)/2=27+2=29, prime, which adds p=5 to the sequence. For p=7, (7+1)^3/8+(7-1)/2=67, prime, which adds p=7 to the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesInInterval(3, 1200) | IsPrime((p+1)^3 div 8+(p-1) div 2)]; // Vincenzo Librandi, Apr 09 2013
-
Mathematica
f[n_]:=((p+1)/2)^3+((p-1)/2); lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,6!}];lst Select[Prime[Range[100]], PrimeQ[(# + 1)^3 / 8 + (# - 1) / 2]&] (* Vincenzo Librandi, Apr 09 2013 *)
Formula
(a(n)+1)^3/8+(a(n)-1)/2 = A163426(n).
Extensions
Edited by R. J. Mathar, Aug 24 2009
Comments