cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163428 Primes of the form ((p+1)/2)^3 + ((p-1)/2)^2 where p is prime.

Original entry on oeis.org

31, 73, 241, 379, 3571, 9661, 20359, 47881, 51949, 65521, 119953, 135151, 291721, 427351, 736921, 761671, 921889, 1202041, 1494313, 1533871, 1742161, 1785961, 2478331, 2533681, 3197839, 3820441, 3894229, 4044643, 4855033, 6573799
Offset: 1

Views

Author

Keywords

Comments

Primes of the form k^3 + k^2 - 2k + 1 where 2k-1 is prime.

Examples

			((5+1)/2)^3 + ((5-1)/2)^2 = 27 + 4 = 31, ((7+1)/2)^3 + ((7-1)/2)^2 = 64 + 9 = 73
		

Crossrefs

Programs

  • Maple
    res:= NULL:
    count:= 0:
    p:= 2
    while count < 100 do
      p:= nextprime(p);
      r:=  ((p+1)/2)^3 + ((p-1)/2)^2;
      if isprime(r) then
         res:= res, r;
         count:= count+1;
      fi
    od:
    res; # Robert Israel, Oct 10 2016
  • Mathematica
    f[n_]:=((p+1)/2)^3+((p-1)/2)^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,6!}]; lst
  • PARI
    lista(nn) = forprime(p=3, nn, if (isprime(q=((p+1)/2)^3 + ((p-1)/2)^2), print1(q, ", "))); \\ Michel Marcus, Oct 11 2016

Extensions

Description and edits by Charles R Greathouse IV, Oct 05 2009

A163442 Primes of the form floor((p/3)^3), where p is prime.

Original entry on oeis.org

181, 1103, 40471, 143329, 212419, 266261, 468493, 14586401, 20948491, 48894061, 53298877, 86546399, 136061111, 150851969, 189448891, 227353303, 249650309, 256855171, 328033129, 361451309, 507533053, 710528249, 815653171, 1172016731
Offset: 1

Views

Author

Keywords

Examples

			(17/3)^3=181.963 -> 181, (31/3)^3=1103.37 -> 1103, (103/3)^3=40471.4 -> 40471
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=IntegerPart[(p/3)^3]; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,7!}];lst
    Select[Table[Floor[(p/3)^3],{p,Prime[Range[800]]}],PrimeQ] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    forprime(p=2,1e3,n=p^3\27;if(isprime(n),print1(n",")))

Extensions

Program and editing by Charles R Greathouse IV, Nov 09 2009

A163443 Primes p such that floor(p^3/27) is prime.

Original entry on oeis.org

17, 31, 103, 157, 179, 193, 233, 733, 827, 1097, 1129, 1327, 1543, 1597, 1723, 1831, 1889, 1907, 2069, 2137, 2393, 2677, 2803, 3163, 3257, 3433, 3617, 3797, 4261, 4999, 5233, 5237, 5309, 5449, 5701, 5939, 6079, 6173, 6637, 6781, 6961, 7069, 7321, 7879
Offset: 1

Views

Author

Keywords

Examples

			p=17 is in the sequence because [(17/3)^3] = [181.963] = 181 is prime.
p=31 is in the sequence because [(31/3)^3] = [1103.37] = 1103 is prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=IntegerPart[(p/3)^3]; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,7!}];lst

Extensions

Introduced standard terminology in the definition - R. J. Mathar, Aug 02 2009
Showing 1-3 of 3 results.