cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163440 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576135, 8064420, 112881405, 1580053020, 22116729180, 309578036040, 4333306233165, 60655281460410, 849019887139515, 11884122064943310, 166347525415813560, 2328442863574420320
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, 13, 13, 13, -91}, {15, 210, 2940, 41160, 576135}, 30] (* G. C. Greubel, Dec 23 2016 *)
    coxG[{5, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)) \\ G. C. Greubel, Dec 23 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
a(n) = 13*a(n-1)+13*a(n-2)+13*a(n-3)+13*a(n-4)-91*a(n-5). - Wesley Ivan Hurt, May 10 2021