cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163445 a(n) = 14*a(n-1) - 47*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 79, 683, 5849, 49785, 422087, 3569323, 30132433, 254095881, 2141117983, 18033145355, 151831489769, 1278083025081, 10757082331991, 90529250469067, 761826636963361, 6410698145440905, 53943922098894703, 453912096548803307
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163444. Inverse binomial transform of A163446.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8*n-7 else 14*Self(n-1)-47*Self(n-2): n in [1..20] ];
    
  • Mathematica
    LinearRecurrence[{14,-47}, {1,9}, 50] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    Vec((1-5*x)/(1-14*x+47*x^2) + O(x^50)) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = ((1+sqrt(2))*(7+sqrt(2))^n + (1-sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1-5*x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 23 2016

A163447 a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 119, 1273, 13513, 142667, 1500479, 15737929, 164744881, 1722111467, 17983160807, 187650088633, 1957031891641, 20402217047531, 212634387415919, 2215643826731593, 23083472275311073, 240466638643803467
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163446. Inverse binomial transform of A163448.

Crossrefs

Programs

  • Magma
    [ n le 2 select 10*n-9 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
    
  • Mathematica
    LinearRecurrence[{18,-79}, {1,11}, 50] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    Vec((1-7*x)/(1-18*x+79*x^2) + O(x^50)) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = ((1+sqrt(2))*(9+sqrt(2))^n + (1-sqrt(2))*(9-sqrt(2))^n)/2.
G.f.: (1-7*x)/(1-18*x+79*x^2).
E.g.f.: exp(9*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 23 2016
Showing 1-2 of 2 results.