cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163460 a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 82, 754, 6980, 64932, 606152, 5672648, 53180944, 499190928, 4689836320, 44087543584, 414630845504, 3900665825856, 36703540792448, 345415371476096, 3251026414485760, 30600669600254208, 288047075905950208
Offset: 0

Views

Author

Klaus Brockhaus, Jul 28 2009

Keywords

Comments

Binomial transform of A163459. Inverse binomial transform of A163461.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8*n-7 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];
    
  • Mathematica
    LinearRecurrence[{16,-62},{1,9},30] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    Vec((1-7*x)/(1-16*x+62*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016

Formula

a(n) = ((2+sqrt(2))*(8+sqrt(2))^n + (2-sqrt(2))*(8-sqrt(2))^n)/4.
G.f.: (1-7*x)/(1-16*x+62*x^2).
E.g.f.: (1/2)*exp(8*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016

A163458 a(n) = 12*a(n-1) - 34*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 50, 362, 2644, 19420, 143144, 1057448, 7822480, 57916528, 429034016, 3179246240, 23563798336, 174671207872, 1294885351040, 9599803144832, 71171535802624, 527665122707200, 3912149255197184, 29005176890321408
Offset: 0

Views

Author

Klaus Brockhaus, Jul 28 2009

Keywords

Comments

Binomial transform of A161734. Inverse binomial transform of A163459.

Crossrefs

Programs

  • Magma
    [ n le 2 select 6*n-5 else 12*Self(n-1)-34*Self(n-2): n in [1..20] ];
    
  • Mathematica
    LinearRecurrence[{12,-34},{1,7},40] (* Harvey P. Dale, Aug 25 2015 *)
  • PARI
    Vec((1-5*x)/(1-12*x+34*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016

Formula

a(n) = ((2+sqrt(2))*(6+sqrt(2))^n + (2-sqrt(2))*(6-sqrt(2))^n)/4.
G.f.: (1-5*x)/(1-12*x+34*x^2).
E.g.f.: (1/2)*exp(6*x)*(sqrt(2)*sinh(sqrt(2)*x) + 2*cosh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016
Showing 1-2 of 2 results.