cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163460 a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 82, 754, 6980, 64932, 606152, 5672648, 53180944, 499190928, 4689836320, 44087543584, 414630845504, 3900665825856, 36703540792448, 345415371476096, 3251026414485760, 30600669600254208, 288047075905950208
Offset: 0

Views

Author

Klaus Brockhaus, Jul 28 2009

Keywords

Comments

Binomial transform of A163459. Inverse binomial transform of A163461.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8*n-7 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];
    
  • Mathematica
    LinearRecurrence[{16,-62},{1,9},30] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    Vec((1-7*x)/(1-16*x+62*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016

Formula

a(n) = ((2+sqrt(2))*(8+sqrt(2))^n + (2-sqrt(2))*(8-sqrt(2))^n)/4.
G.f.: (1-7*x)/(1-16*x+62*x^2).
E.g.f.: (1/2)*exp(8*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016

A163462 a(n) = 20*a(n-1) - 98*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 122, 1362, 15284, 172204, 1946248, 22048968, 250247056, 2844142256, 32358633632, 368446731552, 4197788535104, 47847991009984, 545576543759488, 6222427756211328, 70982053835796736, 809843156607224576
Offset: 0

Views

Author

Klaus Brockhaus, Jul 28 2009

Keywords

Comments

Binomial transform of A163461. Tenth binomial transform of A016116.

Crossrefs

Cf. A163461, A016116 (powers of 2 doubled up).

Programs

  • Magma
    [ n le 2 select 10*n-9 else 20*Self(n-1)-98*Self(n-2): n in [1..18] ];
    
  • Mathematica
    LinearRecurrence[{20,-98},{1,11},30] (* Harvey P. Dale, Dec 04 2011 *)
    CoefficientList[Series[(1 - 9 x)/(1 - 20 x + 98 x^2), {x, 0, 17}], x] (* Michael De Vlieger, Dec 25 2016 *)
  • PARI
    Vec((1-9*x)/(1-20*x+98*x^2) + O(x^50)) \\ G. C. Greubel, Dec 25 2016

Formula

a(n) = ((2+sqrt(2))*(10+sqrt(2))^n + (2-sqrt(2))*(10-sqrt(2))^n)/4.
G.f.: (1-9*x)/(1-20*x+98*x^2).
E.g.f.: (1/2)*exp(10*x)*( 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 25 2016
Showing 1-2 of 2 results.