cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163467 a(n) = floor(p/2) * floor(floor(p/2)/2) * floor(floor(floor(p/2)/2)/2) * ... * 1, where p=prime(n).

Original entry on oeis.org

1, 1, 2, 3, 10, 18, 64, 72, 110, 294, 315, 1296, 2000, 2100, 2530, 6084, 8526, 9450, 33792, 38080, 46656, 53352, 82000, 106480, 248832, 270000, 275400, 322452, 341172, 460992, 615195, 2129920, 2515456, 2552448, 3548448, 3596400, 4161456
Offset: 1

Views

Author

Keywords

Comments

Cumulative product of the residuals of a repeated shift-right operation on the base-2 representation of prime(n).

Examples

			For n=6, p=13, the intermediate factors are floor(13/2)=6, floor(6/2)=3, floor(3/2)=1, which yield a(6)=6*3*1=18.
For n=7, p=17, floor(17/2)=8, floor(8/2)=4, floor(4/2)=2, floor(2/2)=1, which yield a(7)=8*4*2*1=64.
		

Crossrefs

Cf. A098844.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];s=1;While[p>1,p=IntegerPart[p/2];s*=p;];AppendTo[lst,s],{n,5!}];lst
    Table[Times@@Rest[NestWhileList[Floor[#/2]&,Prime[n],#>1&]],{n,40}] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n) = my(p=prime(n), k=1); while(p!=1, k *= p\2; p = p\2); k; \\ Michel Marcus, Jul 26 2017

Extensions

More divisions and primes mentioned in the definition by R. J. Mathar, Aug 02 2009