A163493 Number of binary strings of length n which have the same number of 00 and 01 substrings.
1, 2, 2, 3, 6, 9, 15, 30, 54, 97, 189, 360, 675, 1304, 2522, 4835, 9358, 18193, 35269, 68568, 133737, 260802, 509132, 995801, 1948931, 3816904, 7483636, 14683721, 28827798, 56637969, 111347879, 219019294, 431043814, 848764585, 1672056525, 3295390800, 6497536449
Offset: 0
Keywords
Examples
1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 54*x^8 + 97*x^9 + ... From _Gus Wiseman_, Jul 27 2021: (Start) The a(0) = 1 though a(6) = 15 binary strings: () (0) (1,0) (0,0,1) (0,0,1,0) (0,0,1,1,0) (0,0,0,1,0,1) (1) (1,1) (1,1,0) (0,0,1,1) (0,0,1,1,1) (0,0,1,0,0,1) (1,1,1) (0,1,0,0) (0,1,1,0,0) (0,0,1,1,1,0) (1,0,0,1) (1,0,0,1,0) (0,0,1,1,1,1) (1,1,1,0) (1,0,0,1,1) (0,1,0,0,0,1) (1,1,1,1) (1,0,1,0,0) (0,1,1,1,0,0) (1,1,0,0,1) (1,0,0,1,1,0) (1,1,1,1,0) (1,0,0,1,1,1) (1,1,1,1,1) (1,0,1,1,0,0) (1,1,0,0,1,0) (1,1,0,0,1,1) (1,1,0,1,0,0) (1,1,1,0,0,1) (1,1,1,1,1,0) (1,1,1,1,1,1) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3328 (first 501 terms from R. H. Hardin)
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From _N. J. A. Sloane_, Apr 07 2012]
- R. Stanley, Problem 11610, Amer. Math. Monthly, 118 (2011), 937; 120 (2013), 943-944.
Crossrefs
Antidiagonal sums of the matrices A345197.
Row sums of A345907.
Taking diagonal instead of antidiagonal sums gives A345908.
A011782 counts compositions (or binary strings).
A097805 counts compositions by alternating (or reverse-alternating) sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Programs
-
Maple
with(combinat): count := proc(n) local S, matches, A, k, i; S := subsets(\{seq(i, i=1..n)\}): matches := 0: while not S[finished] do A := S[nextvalue](): k := 0: for i from 1 to n-1 do: if not (i in A) and not (i+1 in A) then k := k + 1: fi: if not (i in A) and (i+1 in A) then k := k - 1: fi: od: if (k = 0) then matches := matches + 1: fi: end do; return(matches); end proc: # second Maple program: b:= proc(n, l, t) option remember; `if`(n-abs(t)<0, 0, `if`(n=0, 1, add(b(n-1, i, t+`if`(l=0, (-1)^i, 0)), i=0..1))) end: a:= n-> b(n, 1, 0): seq(a(n), n=0..36); # Alois P. Heinz, Mar 20 2024
-
Mathematica
a[0] = 1; a[n_] := Sum[Binomial[2*k - 1, k]*Binomial[n - 2*k, k] + Binomial[2*k, k]*Binomial[n - 2*k - 1, k], {k, 0, n/3}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 28 2017, after Joel B. Lewis *) Table[Length[Select[Tuples[{0,1},n],Count[Partition[#,2,1],{0,0}]==Count[Partition[#,2,1],{0,1}]&]],{n,0,10}] (* Gus Wiseman, Jul 27 2021 *) a[0]:=1; a[n_]:=(1 + 3*HypergeometricPFQ[{1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3},{1, (1-n)/2, 1-n/2, -3*n/8}, -27])/2; Array[a,37,0] (* Stefano Spezia, Apr 26 2024 *)
-
Python
from math import comb def A163493(n): return 2+sum((x:=comb((k:=m<<1)-1,m)*comb(n-k,m))+(x*(n-3*m)<<1)//(n-k) for m in range(1,n//3+1)) if n else 1 # Chai Wah Wu, May 01 2024
Formula
G.f.: 1/2/(1-x) + (1+2*x)/2/sqrt((1-x)*(1-2*x)*(1+x+2*x^2)). - Richard Stanley, corrected Apr 29 2011
G.f.: (1 + sqrt( 1 + 4*x / ((1 - x) * (1 - 2*x) * (1 + x + 2*x^2)))) / (2*(1 - x)). - Michael Somos, Jan 30 2012
a(n) = sum( binomial(2*k-1, k)*binomial(n-2*k,k) + binomial(2*k, k)*binomial(n-2*k-1, k), k=0..floor(n/3)). - Joel B. Lewis, May 21 2011
Conjecture: -n*a(n) +(2+n)*a(n-1) +(3n-12)*a(n-2) +(12-n)*a(n-3) +(2n-18)*a(n-4)+(56-12n)*a(n-5) +(8n-40)*a(n-6)=0. - R. J. Mathar, Nov 28 2011
G.f. y = A(x) satisfies x = (1 - x) * (1 - 2*x) * (1 + x + 2*x^2) * y * (y * (1 - x) - 1). - Michael Somos, Jan 30 2012
Sequence a(n) satisfies 0 = a(n) * (n^2-2*n) + a(n-1) * (-3*n^2+8*n-2) + a(n-2) * (3*n^2-10*n+2) + a(n-3) * (-5*n^2+18*n-6) + a(n-4) * (8*n^2-34*n+22) + a(n-5) * (-4*n^2+20*n-16) except if n=1 or n=2. - Michael Somos, Jan 30 2012
a(n) = (1 + 3*hypergeom([1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3],[1, (1-n)/2, 1-n/2, -3*n/8],-27))/2 for n > 0. - Stefano Spezia, Apr 26 2024
a(n) ~ 2^n / sqrt(Pi*n). - Vaclav Kotesovec, Apr 26 2024
Comments