A163518 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1, 23, 506, 11132, 244904, 5387635, 118522404, 2607370689, 57359466780, 1261849124844, 27759379635372, 610677728876061, 13434280356535038, 295540315560771435, 6501582206394337062, 143028104664155140584
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..740
- Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, -231).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6) )); // G. C. Greubel, May 16 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *) coxG[{5, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)) \\ G. C. Greubel, Jul 27 2017
-
Sage
((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
Formula
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
a(n) = 21*a(n-1)+21*a(n-2)+21*a(n-3)+21*a(n-4)-231*a(n-5). - Wesley Ivan Hurt, May 10 2021
Comments