cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163527 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338001, 320778900, 8340014475, 216834216300, 5637529462500, 146571601954050, 3810753388040625, 99076773337132500, 2575922925294444375, 66972093393463976250, 1741224960366454777500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-26*x+350*x^5-325*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-26*x+350*x^5-325*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
    coxG[{5, 325, -25}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-26*x+350*x^5-325*x^6)) \\ G. C. Greubel, Jul 27 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-26*x+350*x^5-325*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
a(n) = 25*a(n-1)+25*a(n-2)+25*a(n-3)+25*a(n-4)-325*a(n-5). - Wesley Ivan Hurt, May 10 2021