cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163565 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 32, 992, 30752, 953312, 29552176, 916102080, 28398688320, 880344576960, 27290224296000, 845982768138960, 26225026083540000, 812962177226488800, 25201404928845626400, 781230453493416184800, 24217737986779970583600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-31*x+495*x^5-465*x^6) )); // G. C. Greubel, May 18 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-31*x+495*x^5-465*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 28 2017 *)
    coxG[{5, 465, -30}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 18 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-31*x+495*x^5-465*x^6)) \\ G. C. Greubel, Jul 28 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-31*x+495*x^5-465*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
a(n) = 30*a(n-1)+30*a(n-2)+30*a(n-3)+30*a(n-4)-465*a(n-5). - Wesley Ivan Hurt, May 11 2021