cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163600 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771165, 1590199380, 54066091695, 1838223751980, 62498813135220, 2124932636259510, 72246791293015185, 2456359680805901640, 83515167573569420535, 2839479604449882838290, 96541079403144247211340
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-34*x+594*x^5-561*x^6) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-34*x+594*x^5-561*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 29 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-34*x+594*x^5-561*x^6)) \\ G. C. Greubel, Jul 29 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-34*x+594*x^5-561*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
a(n) = 33*a(n-1)+33*a(n-2)+33*a(n-3)+33*a(n-4)-561*a(n-5). - Wesley Ivan Hurt, May 11 2021