cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A163673 a(n) = n*(2*n^2 + 5*n + 15)/2.

Original entry on oeis.org

0, 11, 33, 72, 134, 225, 351, 518, 732, 999, 1325, 1716, 2178, 2717, 3339, 4050, 4856, 5763, 6777, 7904, 9150, 10521, 12023, 13662, 15444, 17375, 19461, 21708, 24122, 26709, 29475, 32426, 35568, 38907, 42449, 46200, 50166
Offset: 0

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(11-11*x+6*x^2)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 33, 72}, 50] (* Vincenzo Librandi, Mar 06 2012 *)
    Table[n (2n^2+5n+15)/2,{n,0,60}] (* Harvey P. Dale, Apr 01 2023 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(11-11*x+6*x^2)/(x-1)^4)) \\ G. C. Greubel, Aug 02 2017

Formula

Row sums from A163672: a(n) = Sum_{m=1..n} (2*m*n + m + n + 7) = A163661(n) - n.
G.f.: x*(11 - 11*x + 6*x^2)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*x*(22 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 02 2017

Extensions

Edited by R. J. Mathar, Aug 05 2009
Showing 1-1 of 1 results.