cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163662 A020988 written in base 2.

Original entry on oeis.org

10, 1010, 101010, 10101010, 1010101010, 101010101010, 10101010101010, 1010101010101010, 101010101010101010, 10101010101010101010, 1010101010101010101010, 101010101010101010101010, 10101010101010101010101010, 1010101010101010101010101010, 101010101010101010101010101010
Offset: 1

Views

Author

Jaroslav Krizek, Aug 02 2009

Keywords

Comments

The digits are n concatenated blocks of (10).
Smallest number having alternating bit sum -n. Cf. A065359. - Washington Bomfim, Jan 22 2011

Crossrefs

Programs

  • Maple
    A163662 := proc(n) add(10^(2*k-1),k=1..n) ; end: seq(A163662(n),n=1..30) ; # R. J. Mathar, Jul 08 2009
  • Mathematica
    Table[(10/99)*(10^(2*n) - 1), {n,1,50}] (* G. C. Greubel, Aug 01 2017 *)
    Table[FromDigits[PadRight[{},2n,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{10,1010},20] (* Harvey P. Dale, Jan 08 2020 *)
  • PARI
    x='x+O('x^50); Vec(10*x/((100*x-1)*(x-1))) \\ G. C. Greubel, Aug 01 2017

Formula

a(n) = Sum_{k=1..n} 10^(2*k-1).
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = 100*a(n-1) + 10.
a(n) = 101*a(n-1) - 100*a(n-2).
G.f.: 10*x/((100*x-1)*(x-1)). (End)
From G. C. Greubel, Aug 01 2017: (Start)
a(n) = (10/99)*(10^(2*n) - 1).
E.g.f.: (10/99)*(exp(100*x) - exp(x)). (End)
a(n) = 10*A094028(n-1). - Elmo R. Oliveira, Jul 23 2025