cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163672 Triangle T(n,m) = 2mn + m + n + 7 read by rows.

Original entry on oeis.org

11, 14, 19, 17, 24, 31, 20, 29, 38, 47, 23, 34, 45, 56, 67, 26, 39, 52, 65, 78, 91, 29, 44, 59, 74, 89, 104, 119, 32, 49, 66, 83, 100, 117, 134, 151, 35, 54, 73, 92, 111, 130, 149, 168, 187, 38, 59, 80, 101, 122, 143, 164, 185, 206, 227, 41, 64, 87, 110, 133, 156, 179
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

2*T(n,n) - 13 = (2n+1)^2.
The numbers 2*T(m,n)-13 =(2*n+1)*(2*m+1) are not prime. Also: first column: A016789; second column: A016897; third column: A017017; fourth column: A017185. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
  11;
  14,  19;
  17,  24,  31;
  20,  29,  38,  47;
  23,  34,  45,  56,  67;
  26,  39,  52,  65,  78,  91;
  29,  44,  59,  74,  89, 104, 119;
  32,  49,  66,  83, 100, 117, 134, 151;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 7: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
    
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 7; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 7, ", "))) \\ G. C. Greubel, Aug 02 2017

Formula

T(n,m) = A163674(n,m)-2 = A163657(n,m)-1.

Extensions

Edited by R. J. Mathar, Oct 12 2009

A153051 Numbers n>=9 such that 2*n-17 is not a prime.

Original entry on oeis.org

9, 13, 16, 19, 21, 22, 25, 26, 28, 31, 33, 34, 36, 37, 40, 41, 43, 46, 47, 49, 51, 52, 54, 55, 56, 58, 61, 64, 66, 67, 68, 69, 70, 71, 73, 75, 76, 79, 80, 81, 82, 85, 86, 88, 89, 91, 93, 94, 96, 97, 100, 101, 102, 103, 106, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Adding 1 to each entry yields A153041. [From R. J. Mathar, Dec 19 2008]
The terms after a(1) are the values of 2*h*k + k + h + 9, where h and k are positive integers.- Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [9..150] | not IsPrime(2*n - 17)]; // Vincenzo Librandi, Jan 19 2013
  • Mathematica
    Select[Range[9, 200], !PrimeQ[2 # - 17] &] (* Vincenzo Librandi, Jan 19 2013 *)

Extensions

57 removed by R. J. Mathar, Dec 19 2008

A163675 a(n) = n*(2*n^2 + 5*n + 19)/2.

Original entry on oeis.org

0, 13, 37, 78, 142, 235, 363, 532, 748, 1017, 1345, 1738, 2202, 2743, 3367, 4080, 4888, 5797, 6813, 7942, 9190, 10563, 12067, 13708, 15492, 17425, 19513, 21762, 24178, 26767, 29535, 32488, 35632, 38973, 42517, 46270, 50238, 54427, 58843, 63492, 68380
Offset: 0

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(13-15*x+8*x^2)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 13, 37, 78}, 50] (* Vincenzo Librandi, Mar 06 2012 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(13 -15*x +8*x^2)/(x-1)^4)) \\ G. C. Greubel, Aug 02 2017

Formula

Row sums from A163674: a(n) = Sum_{m=1..n} (2*m*n + m + n + 9).
a(n) = A163673(n) + 2*n = A162256(n) + 11*n.
G.f.: x*(13 - 15*x + 8*x^2)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*x*(26 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 02 2017

Extensions

Edited and a(31) corrected by R. J. Mathar, Aug 05 2009
Showing 1-3 of 3 results.