A163774 Row sums of the central coefficients triangle (A163771).
1, 3, 13, 51, 201, 783, 3039, 11763, 45481, 175803, 679779, 2630367, 10187659, 39500373, 153329913, 595883763, 2318471289, 9030982491, 35216266947, 137469149451, 537152523711, 2100857828193, 8223917499477, 32219655346719, 126328429601451, 495676719721953, 1946227355491909
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(2*i),i=k..n), k=0..n) end:
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)
Formula
a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$, where i$ denotes the swinging factorial of i (A056040).
Conjecture: a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+1,k)*binomial(2*k,k). - Werner Schulte, Nov 17 2015
Extensions
More terms from Michel Marcus, Nov 24 2015