cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163774 Row sums of the central coefficients triangle (A163771).

Original entry on oeis.org

1, 3, 13, 51, 201, 783, 3039, 11763, 45481, 175803, 679779, 2630367, 10187659, 39500373, 153329913, 595883763, 2318471289, 9030982491, 35216266947, 137469149451, 537152523711, 2100857828193, 8223917499477, 32219655346719, 126328429601451, 495676719721953, 1946227355491909
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(2*i),i=k..n), k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$, where i$ denotes the swinging factorial of i (A056040).
Conjecture: a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+1,k)*binomial(2*k,k). - Werner Schulte, Nov 17 2015

Extensions

More terms from Michel Marcus, Nov 24 2015