cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163777 Even terms in the sequence of Queneau numbers A054639.

Original entry on oeis.org

2, 6, 14, 18, 26, 30, 50, 74, 86, 90, 98, 134, 146, 158, 174, 186, 194, 210, 230, 254, 270, 278, 306, 326, 330, 338, 350, 354, 378, 386, 398, 410, 414, 426, 438, 470, 530, 554, 558, 606, 614, 618, 638, 650, 686, 690, 726, 746, 774, 810, 818, 834, 846, 866, 870
Offset: 1

Views

Author

Peter R. J. Asveld, Aug 11 2009

Keywords

Comments

Previous name was: a(n) is the n-th A_0-prime (Archimedes_0 prime).
We have: (1) N is A_0-prime if and only if N is even, p = 2N + 1 is a prime number and both +2 and -2 generate Z_p^* (the multiplicative group of Z_p); (2) N is A_0-prime if and only if N = 2 (mod 4), p = 2N + 1 is a prime number and both +2 and -2 generate Z_p^*.

Crossrefs

The A_0-primes are the even T- or Twist-primes, these T-primes are equal to the Queneau-numbers (A054639). For the related A_1-, A^+_1- and A^-_1-primes, see A163778, A163779 and A163780. Considered as sets A163777 is the intersection of the Josephus_2-primes (A163782) and the dual Josephus_2-primes (A163781), it also equals the difference of A054639 and the A_1-primes (A163779).
Cf. A137310.

Programs

  • Mathematica
    okQ[n_] := EvenQ[n] && PrimeQ[2n+1] && MultiplicativeOrder[2, 2n+1] == 2n;
    Select[Range[1000], okQ] (* Jean-François Alcover, Sep 10 2019, from PARI *)
  • PARI
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={n>1 && n==Follow(1, j->ceil((n+1)/2) - (-1)^j*ceil((j-1)/2))}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    ok(n)={n%2==0 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == 2*n}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Formula

a(n) = 2*A137310(n). - Andrew Howroyd, Nov 11 2017

Extensions

Definition simplified by Michel Marcus, May 27 2013
a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Joerg Arndt, Mar 23 2018, edited by M. F. Hasler, Mar 24 2018