cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A163782 a(n) is the n-th J_2-prime (Josephus_2 prime).

Original entry on oeis.org

2, 5, 6, 9, 14, 18, 26, 29, 30, 33, 41, 50, 53, 65, 69, 74, 81, 86, 89, 90, 98, 105, 113, 134, 146, 158, 173, 174, 186, 189, 194, 209, 210, 221, 230, 233, 245, 254, 261, 270, 273, 278, 281, 293, 306, 309, 326, 329
Offset: 1

Views

Author

Peter R. J. Asveld, Aug 05 2009

Keywords

Comments

Place the numbers 1..N (N>=2) on a circle and cyclically mark the 2nd unmarked number until all N numbers are marked. The order in which the N numbers are marked defines a permutation; N is a J_2-prime if this permutation consists of a single cycle of length N.
The resulting permutation can be written as p(m,N) = (2N+1-||2N+1-m||)/2 (1 <= m <= N), where ||x|| is the odd number such that x/||x|| is a power of 2. E.g., ||16||=1 and ||120||=15.
No formula is known for a(n): the J_2-primes have been found by exhaustive search (however, see the CROSS-REFERENCES). But we have: (1) N is J_2-prime iff p=2N+1 is a prime number and +2 generates Z_p^* (the multiplicative group of Z_p). (2) N is J_2-prime iff p=2N+1 is a prime number and exactly one of the following holds: (a) N == 1 (mod 4) and +2 generates Z_p^* but -2 does not, (b) N == 2 (mod 4) and both +2 and -2 generate Z_p^*.

Examples

			p(1,5)=3, p(2,5)=1, p(3,5)=5, p(4,5)=2 and p(5,5)=4.
So p=(1 3 5 4 2) and 5 is J_2-prime.
		

References

  • R. L. Graham, D. E. Knuth & O. Patashnik, Concrete Mathematics (1989), Addison-Wesley, Reading, MA. Sections 1.3 & 3.3.

Crossrefs

A163783 through A163800 for J_3- through J_20-primes.
Considered as sets, A163782 is the union of A163777 and A163779, it equals the difference of A054639 and A163780, and 2*a(n) results in A071642.

Programs

  • Java
    isJ2Prime(int n) { // for n > 1
      int count = 0, leader = 0;
      if (n % 4 == 1 || n % 4 == 2) { // small optimization
        do {
          leader = A025480(leader + n);
          count++;
        } while (leader != 0);
      }
      return count == n;
    } // Joe Nellis, Jan 27 2023
  • Mathematica
    lst = {};
    Do[If[IntegerQ[(2^n + 1)/(2 n + 1)] && PrimitiveRoot[2 n + 1] == 2,
    AppendTo[lst, n]], {n, 2, 10^5}]; lst (* Hilko Koning, Sep 21 2021 *)
  • PARI
    Follow(s,f)={my(t=f(s),k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={my(d=2*n+1); n>1&&n==Follow(1,i->(d-((d-i)>>valuation(d-i, 2)))/2)}
    select(n->ok(n),[1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    forprime(p=5, 2000, if(znorder(Mod(2, p))==p-1, print1((p-1)/2, ", "))); \\ Andrew Howroyd, Nov 11 2017
    

Formula

a(n) = A071642(n+3)/2.

A071642 Numbers n such that x^n + x^(n-1) + x^(n-2) + ... + x + 1 is irreducible over GF(2).

Original entry on oeis.org

0, 1, 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348, 372, 378, 388, 418, 420, 442, 460, 466, 490, 508, 522, 540, 546, 556, 562, 586, 612, 618, 652, 658, 660, 676, 700, 708, 756, 772
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2002

Keywords

Comments

All such polynomials of odd degree > 1 are reducible over GF(2).
For n >= 2, a(n) = A001122(n-2) - 1 due to the relationship between cycles and irreducibility. - T. D. Noe, Sep 09 2003
n such that a type-1 optimal normal basis of GF(2^n) (over GF(2)) exists. The corresponding field polynomial is the all-ones polynomial x^n+x^(n-1)+...+1. - Joerg Arndt, Feb 25 2008
From Peter R. J. Asveld, Aug 13 2009: (Start)
a(n) is also the n-th S-prime (Shuffle prime)
For N>=2, the family of shuffle permutations is defined by
p(m,N) = 2m (mod N+1) if N is even,
p(m,N) = 2m (mod N) if N is odd and 1<=m
p(N,N) = N if N is odd.
N is S-prime if p(m,N) consists of a single cycle of length N.
So all S-primes are even.
N is S-prime iff p=N+1 is an odd prime number and +2 generates Z_p^* (the multiplicative group of Z_p).
a(n)/2 results in the Josephus_2-primes (A163782). Considered as sets a(n)/2 is the union of A163777 and A163779. If b(n) denotes the dual shuffle primes (A163776), then the union of a(n)/2 and b(n)/2 is equal to the Twist-primes or Queneau numbers (A054639); their intersection is equal to the Archimedes_0-primes (A163777). (End)
Conjecture: Terms >= 2 are numbers n such that P^n + P^(n-1) + P^(n-2) + ... + P + 1 is irreducible over GF(2), where P=x^2+x+1. - Luis H. Gallardo, Dec 23 2019

Examples

			For n=4 and n=6 we obtain the permutations (1 2 4 3) and (1 2 4)(3 6 5): 4 is S-prime, but 6 is not. [_Peter R. J. Asveld_, Aug 13 2009]
		

Crossrefs

Cf. A001122 (primes with primitive root 2).

Programs

  • Mathematica
    Join[{0, 1}, Reap[For[p = 2, p < 10^3, p = NextPrime[p], If[ MultiplicativeOrder[2, p] == p-1, Sow[p-1]]]][[2, 1]]] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
  • PARI
    forprime(p=3,1000,if(znorder(Mod(2,p))==p-1,print1(p-1,", "))) /* Joerg Arndt, Jul 05 2011 */

Extensions

Extended by Robert G. Wilson v, Jun 24 2002
Initial terms of b-file corrected by N. J. A. Sloane, Aug 31 2009

A054639 Queneau numbers: numbers n such that the Queneau-Daniel permutation {1, 2, 3, ..., n} -> {n, 1, n-1, 2, n-2, 3, ...} is of order n.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, 50, 51, 53, 65, 69, 74, 81, 83, 86, 89, 90, 95, 98, 99, 105, 113, 119, 131, 134, 135, 146, 155, 158, 173, 174, 179, 183, 186, 189, 191, 194, 209, 210, 221, 230, 231, 233, 239
Offset: 1

Author

Gilles Esposito-Farese (gef(AT)cpt.univ-mrs.fr), May 17 2000

Keywords

Comments

The troubadour Arnaut Daniel composed sestinas based on the permutation 123456 -> 615243, which cycles after 6 iterations.
Roubaud quotes the number 141, but the corresponding Queneau-Daniel permutation is only of order 47 = 141/3.
This appears to coincide with the numbers n such that a type-2 optimal normal basis exists for GF(2^n) over GF(2). But are these two sequences really the same? - Joerg Arndt, Feb 11 2008
The answer is Yes - see Theorem 2 of the Dumas reference. [Jean-Guillaume Dumas (Jean-Guillaume.Dumas(AT)imag.fr), Mar 20 2008]
From Peter R. J. Asveld, Aug 17 2009: (Start)
a(n) is the n-th T-prime (Twist prime). For N >= 2, the family of twist permutations is defined by
p(m,N) == +2m (mod 2N+1) if 1 <= m < k = ceiling((N+1)/2),
p(m,N) == -2m (mod 2N+1) if k <= m < N.
N is T-prime if p(m,N) consists of a single cycle of length N.
The twist permutation is the inverse of the Queneau-Daniel permutation.
N is T-prime iff p=2N+1 is a prime number and exactly one of the following three conditions holds;
(1) N == 1 (mod 4) and +2 generates Z_p^* (the multiplicative group of Z_p) but -2 does not,
(2) N == 2 (mod 4) and both +2 and -2 generate Z_p^*,
(3) N == 3 (mod 4) and -2 generate Z_p^* but +2 does not. (End)
The sequence name says the permutation is of order n, but P. R. J. Asveld's comment says it's an n-cycle. Is there a proof that those conditions are equivalent for the Queneau-Daniel permutation? (They are not equivalent for any arbitrary permutation; e.g., (123)(45)(6) has order 6 but isn't a 6-cycle.) More generally, I have found that for all n <= 9450, (order of Queneau-Daniel permutation) = (length of orbit of 1) = A003558(n). Does this hold for all n? - David Wasserman, Aug 30 2011

Examples

			For N=6 and N=7 we obtain the permutations (1 2 4 5 3 6) and (1 2 4 7)(3 6)(5): 6 is T-prime, but 7 is not. - _Peter R. J. Asveld_, Aug 17 2009
		

References

  • Raymond Queneau, Note complémentaire sur la Sextaine, Subsidia Pataphysica 1 (1963), pp. 79-80.
  • Jacques Roubaud, Bibliothèque Oulipienne No 65 (1992) and 66 (1993).

Crossrefs

Not to be confused with Queneau's "s-additive sequences", see A003044.
A005384 is a subsequence.
Union of A163782 (Josephus_2-primes) and A163781 (dual Josephus_2-primes); also the union of A163777 (Archimedes_0-primes) and A163778 (Archimedes_1-primes); also the union of A071642/2 (shuffle primes) and A163776/2 (dual shuffle primes). - Peter R. J. Asveld, Aug 17 2009
Cf. A216371, A003558 (for which a(n) == n).

Programs

  • Maple
    QD:= proc(n) local i;
      if n::even then map(op,[seq([n-i,i+1],i=0..n/2-1)])
      else map(op, [seq([n-i,i+1],i=0..(n-1)/2-1),[(n+1)/2]])
      fi
    end proc:
    select(n -> GroupTheory:-PermOrder(Perm(QD(n)))=n, [$1..1000]); # Robert Israel, May 01 2016
  • Mathematica
    a[p_] := Sum[Cos[2^n Pi/((2 p + 1) )], {n, 1, p}];
    Select[Range[500],Reduce[a[#] == -1/2, Rationals] &] (* Gerry Martens, May 01 2016 *)
  • PARI
    is(n)=
    {
        if (n==1, return(1));
        my( m=n%4 );
        if ( m==4, return(0) );
        my(p=2*n+1, r=znorder(Mod(2,p)));
        if ( !isprime(p), return(0) );
        if ( m==3 && r==n, return(1) );
        if ( r==2*n, return(1) ); \\ r == 1 or 2
        return(0);
    }
    for(n=1,10^3, if(is(n),print1(n,", ")) );
    \\ Joerg Arndt, May 02 2016

Formula

a(n) = (A216371(n)-1)/2. - L. Edson Jeffery, Dec 18 2012
a(n) >> n log n, and on the Bateman-Horn-Stemmler conjecture a(n) << n log^2 n. I imagine a(n) ≍ n log n, and numerics suggest that perhaps a(n) ~ kn log n for some constant k (which seems to be around 1.122). - Charles R Greathouse IV, Aug 02 2023

A163778 Odd terms in A054639.

Original entry on oeis.org

3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, 231, 233, 239, 243, 245, 251, 261, 273, 281, 293, 299, 303, 309, 323, 329, 359, 371, 375, 393, 411, 413, 419, 429
Offset: 1

Author

Peter R. J. Asveld, Aug 11 2009

Keywords

Comments

Previous name was: The A_1-primes (Archimedes_1 primes).
We have: (1) N is an A_1-prime iff N is odd, p=2N+1 is a prime number and only one of +2 and -2 generates Z_p^* (the multiplicative group of Z_p); (2) N is an A_1-prime iff p=2N+1 is a prime number and exactly one of the following holds: (a) N == 1 (mod 4) and +2 generates Z_p^* but -2 does not, (b) N == 3 (mod 4) and -2 generates Z_p^* but +2 does not.
The A_1-primes are the odd T- or Twist-primes (the T-primes are the same as the Queneau-numbers, A054639). For the related A_0-, A^+_1- and A^-_1-primes, see A163777, A163779 and A163780. Considered as a set, the present sequence is the union of the A^+_1-primes (A163779) and the A^-_1-primes (A163780). It is also equal to the difference of A054639 and the A_0-primes (A163777).

Programs

  • Mathematica
    follow[s_, f_] := Module[{t, k}, t = f[s]; k = 1; While[t>s, k++; t = f[t]]; If[s == t, k, 0]];
    okQ[n_] := n>1 && n == follow[1, Function[j, Ceiling[n/2] + (-1)^j*Ceiling[ (j-1)/2]]];
    A163778 = Select[Range[1000], okQ] (* Jean-François Alcover, Jun 07 2018, after Andrew Howroyd *)
  • PARI
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={n>1 && n==Follow(1, j->ceil(n/2) + (-1)^j*ceil((j-1)/2))}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    ok(n)={n>1 && n%2==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%4==3, n, 2*n)}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Extensions

a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Joerg Arndt, Mar 23 2018

A163780 Terms in A054639 equal to 3 mod 4.

Original entry on oeis.org

3, 11, 23, 35, 39, 51, 83, 95, 99, 119, 131, 135, 155, 179, 183, 191, 231, 239, 243, 251, 299, 303, 323, 359, 371, 375, 411, 419, 431, 443, 483, 491, 495, 515, 519, 531, 543, 575, 611, 615, 639, 651, 659, 683, 719, 723, 743, 755, 771, 779, 783, 791, 803, 831, 879
Offset: 1

Author

Peter R. J. Asveld, Aug 12 2009

Keywords

Comments

Previous name was: a(n) is the n-th A^-_1-prime (Archimedes^-_1 prime).
N is A^-_1-prime iff N=3 (mod 4), p=2N+1 is a prime number and -2 generates Z_p^* (the multiplicative group of Z_p) but +2 does not.

Crossrefs

The A^-_1-primes are the T- or Twist-primes congruent 3 (mod 4), these T-primes are equal to the Queneau-numbers (A054639). For the related A_0-, A_1- and A^+_1-primes, see A163777, A163778 and A163779. Considered as sets the union of A163779 and A163780 equals A163778, the union of A163780 and A163777 is equal to A163781 (dual J_2-primes).

Programs

  • PARI
    ok(n) = n%4==3 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == n;
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Extensions

a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Andrey Zabolotskiy, Mar 23 2018

A163779 Numbers k of the form 4*j + 1 such that 2*k + 1 is a prime with primitive root 2.

Original entry on oeis.org

1, 5, 9, 29, 33, 41, 53, 65, 69, 81, 89, 105, 113, 173, 189, 209, 221, 233, 245, 261, 273, 281, 293, 309, 329, 393, 413, 429, 441, 453, 473, 509, 545, 561, 585, 593, 629, 641, 645, 653, 713, 725, 741, 749, 761, 765, 785, 809, 833, 873, 893, 933, 953, 965, 989, 993
Offset: 1

Author

Peter R. J. Asveld, Aug 12 2009

Keywords

Comments

Previous name was: a(n) is the n-th A^+_1-prime (Archimedes^+_1 prime).
N is A^+_1-prime iff N=1 (mod 4), p=2N+1 is a prime number and +2 generates Z_p^* (the multiplicative group of Z_p) but -2 does not.

Crossrefs

The A^+_1-primes are the T- or Twist-primes congruent 1 (mod 4), these T-primes are equal to the Queneau-numbers (A054639). For the related A_0-, A_1- and A^-_1-primes, see A163777, A163778 and A163780. Considered as sets the union of A163779 and A163780 equals A163778, the union of A163779 and A163777 is equal to A163782 (J_2-primes).

Programs

  • Mathematica
    okQ[n_] := Mod[n, 4] == 1 && PrimeQ[2n+1] && MultiplicativeOrder[2, 2n+1] == 2n;
    Select[Range[1000], okQ] (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
  • PARI
    ok(n) = n%4==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1))==2*n;
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Formula

2 * a(n) + 1 = A213051(n+1). - Joerg Arndt, Mar 23 2018

Extensions

a(32)-a(55) from Andrew Howroyd, Nov 11 2017
Term 1 prepended and new name from Joerg Arndt, Mar 23 2018

A163781 a(n) is the n-th dJ_2 prime (dual Josephus_2 prime).

Original entry on oeis.org

2, 3, 6, 11, 14, 18, 23, 26, 30, 35, 39, 50, 51, 74, 83, 86, 90, 95, 98, 99, 119, 131, 134, 135, 146, 155, 158, 174, 179, 183, 186, 191, 194, 210, 230, 231, 239, 243, 251, 254, 270, 278, 299, 303, 306, 323, 326, 330, 338, 350, 354, 359, 371, 375, 378
Offset: 1

Author

Peter R. J. Asveld, Aug 17 2009

Keywords

Comments

The family of dual Josephus_2 (or dJ_2) permutations is defined by p(m,N)=(2N + 1 - F(m,2N + 1))/2 if 1<=m<=N, N>=2, where F(x,y) is the odd number such that 1<=F(x,y)=0. Note that F(2k + 1,y)=2k + 1 for 2k + 1
dJ_2 permutations can also be defined using a numbering/elimination procedure similar to the definition of the Josephus_2 permutations in [R.L. Graham et al.], or in A163782; see [P. R. J. Asveld].
No formula is known for a(n): the dJ_2 primes have been found by exhaustive search. But we have: (1) N is dJ_2 prime iff p=2N+1 is a prime number and -2 generates Z_p^* (the multiplicative group of Z_p); (2) N is dJ_2 prime iff p=2N+1 is a prime number and exactly one of the following holds:
(a) N=2 (mod 4) and both +2 and -2 generate Z_p^*,
(b) N=3 (mod 4) and -2 generates Z_p^* but +2 does not.

Examples

			For N=6 we have
  m       | 1   2   3   4   5   6
  --------+----------------------
  F(m,13) | 1   7   3  11   5   9
  t       | 0   2   0   1   0   3
  p(m,6)  | 6   3   5   1   4   2
So the permutation is (1 6 2 3 5 4) and 6 is dJ_2 prime.
		

References

  • R. L. Graham, D. E. Knuth & O. Patashnik, Concrete Mathematics (1989), Addison-Wesley, Reading, MA. Sections 1.3 & 3.3.

Crossrefs

Considered as sets the union of A163781 and A163782 (J_2 primes) equals A054639 (T-primes or Queneau numbers), their intersection is equal to A163777 (Archimedes_0 primes). A163781 equals the union of A163777 and A163780 (Archimedes^-_1 primes).

Programs

  • Mathematica
    okQ[n_] := Mod[n, 4] >= 2 && PrimeQ[2n+1] && MultiplicativeOrder[2, 2n+1] == If[OddQ[n], n, 2n];
    Select[Range[1000], okQ] (* Jean-François Alcover, Sep 23 2019, from PARI *)
  • PARI
    ok(n)={n%4>=2 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%2,n,2*n)};
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Extensions

a(37)-a(55) from Andrew Howroyd, Nov 11 2017

A019567 Order of the Mongean shuffle permutation of 2n cards: a(n) is least number m for which either 2^m + 1 or 2^m - 1 is divisible by 4n + 1.

Original entry on oeis.org

1, 2, 3, 6, 4, 6, 10, 14, 5, 18, 10, 12, 21, 26, 9, 30, 6, 22, 9, 30, 27, 8, 11, 10, 24, 50, 12, 18, 14, 12, 55, 50, 7, 18, 34, 46, 14, 74, 24, 26, 33, 20, 78, 86, 29, 90, 18, 18, 48, 98, 33, 10, 45, 70, 15, 24, 60, 38, 29, 78, 12, 84, 41, 110, 8, 84, 26, 134, 12, 46, 35, 36, 68, 146
Offset: 0

Author

John Bullitt (metta(AT)world.std.com), N. J. A. Sloane and J. H. Conway

Keywords

Comments

Write down 1, then 2 to left, 3 to right, 4 to left, ..., getting [ 2n,2n-2,...,4,2,1,3,5,...,2n-1 ]; the sequence 2,3,6,4,6,10,14,5,18,10,12,21,26,9,... gives order of permutation sending 1 to 2n, 2 to 2n-2, ..., 2n to 2n-1.
Equivalently, the sequence 2,3,6,4,6,10,14,5,18,10,12,21,26,9,... gives the number of Mongean shuffles needed to return a deck of 2n cards (n=1,2,3,...) to its original order.
It appears that a(n) = order((-1)^(n+1)*2 in Z_{2n+1}) / f with f=1 when n==2 (mod 3) and for n = 0, 19, 21, 30,33, 52, 55, 61, 63, 70, ..., f=2 else. I don't know how to characterize the "exceptional" n's. - M. F. Hasler, Mar 31 2019

Examples

			Illustrating the initial terms:
   n  4n+1  2^m+1  2^m-1  m
   0    1            1    1
   1    5     5           2
   2    9     9           3
   3   13    5*13         6
   4   17     17          4
   5   21           3*21  6
   6   25   41*25        10
		

References

  • A. P. Domoryad, Mathematical Games and Pastimes, Pergamon Press, 1964; see pp. 134-135.
  • W. W. Rouse Ball, Mathematical Recreations and Essays, 11th ed. 1939, p. 311

Crossrefs

Programs

  • Maple
    A019567:=  proc(n)
        for m from 1 do
            if modp(2^m-1,4*n+1) =0 or modp(2^m+1,4*n+1)=0 then
                return m ;
            end if;
        end do;
    end proc: # N. J. A. Sloane, Jul 28 2007
  • Mathematica
    a[n_] := For[m=1, True, m++, If[AnyTrue[{-1, 1}, Divisible[2^m+#, 4n+1]&], Return[m]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    A019567(n,z=Mod(2,4*n+1))=for(m=1,oo,bittest(5,lift(z^m+1))&&return(m)) \\ M. F. Hasler, Mar 31 2019

Formula

a(A163777(n)/2) = A163777(n). - Andrew Howroyd, Nov 11 2017

Extensions

Comments corrected by Mikko Nieminen, Jul 26 2007, who also provided the Domoryad reference
Definition edited by N. J. A. Sloane, Nov 09 2017

A163776 a(n) is the n-th dS-prime (dual Shuffle prime).

Original entry on oeis.org

4, 6, 12, 22, 28, 36, 46, 52, 60, 70, 78, 100, 102, 148, 166, 172, 180, 190, 196, 198, 238, 262, 268, 270, 292, 310, 316, 348, 358, 366, 372, 382, 388, 420, 460, 462, 478, 486, 502, 508, 540, 556, 598, 606, 612, 646, 652, 660, 676, 700, 708, 718, 742, 750, 756
Offset: 1

Author

Peter R. J. Asveld, Aug 13 2009

Keywords

Comments

For N>=2, the family of dual shuffle permutations is defined by p(m,N) = -2m (mod N+1) if N is even, p(m,N) = -2m (mod N) if N is odd and 1<=m
No formula is known for a(n): the dS-primes have been found by exhaustive search. But we have: N is dS-prime iff p=N+1 is an odd prime number and -2 generates Z_p^* (the multiplicative group of Z_p).

Examples

			For N=6 and N=10 we obtain the permutations (1 5 4 6 2 3) and (1 9 4 3 5)(2 7 8 6 10): 6 is dS-prime, but 10 is not.
		

Crossrefs

a(n)/2 results in the dual Josephus_2-primes (A163781). Considered as sets a(n)/2 is the union of A163777 and A163780. If b(n) denotes the shuffle primes (A071642), then the union of a(n)/2 and b(n)/2 is equal to the Twist-primes or Queneau numbers (A054639), their intersection is equal to the Archimedes_0-primes (A163777).

Formula

a(n) = 2*A163781(n).

Extensions

a(33)-a(55) from Andrew Howroyd, Nov 11 2017
Showing 1-9 of 9 results.