0, 1, 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348, 372, 378, 388, 418, 420, 442, 460, 466, 490, 508, 522, 540, 546, 556, 562, 586, 612, 618, 652, 658, 660, 676, 700, 708, 756, 772
Offset: 1
A163777
Even terms in the sequence of Queneau numbers A054639.
Original entry on oeis.org
2, 6, 14, 18, 26, 30, 50, 74, 86, 90, 98, 134, 146, 158, 174, 186, 194, 210, 230, 254, 270, 278, 306, 326, 330, 338, 350, 354, 378, 386, 398, 410, 414, 426, 438, 470, 530, 554, 558, 606, 614, 618, 638, 650, 686, 690, 726, 746, 774, 810, 818, 834, 846, 866, 870
Offset: 1
- P. R. J. Asveld, Table of n, a(n) for n = 1..3378.
- P. R. J. Asveld, Permuting operations on strings and their relation to prime numbers, Discrete Applied Mathematics 159 (2011), 1915-1932.
- P. R. J. Asveld, Permuting operations on strings and the distribution of their prime numbers (2011), TR-CTIT-11-24, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Some Families of Permutations and Their Primes (2009), TR-CTIT-09-27, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Permuting Operations on Strings-Their Permutations and Their Primes, Twente University of Technology, 2014. Another link.
- Index entries for sequences related to the Josephus Problem
The A_0-primes are the even T- or Twist-primes, these T-primes are equal to the Queneau-numbers (
A054639). For the related A_1-, A^+_1- and A^-_1-primes, see
A163778,
A163779 and
A163780. Considered as sets
A163777 is the intersection of the Josephus_2-primes (
A163782) and the dual Josephus_2-primes (
A163781), it also equals the difference of
A054639 and the A_1-primes (
A163779).
-
okQ[n_] := EvenQ[n] && PrimeQ[2n+1] && MultiplicativeOrder[2, 2n+1] == 2n;
Select[Range[1000], okQ] (* Jean-François Alcover, Sep 10 2019, from PARI *)
-
Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
ok(n)={n>1 && n==Follow(1, j->ceil((n+1)/2) - (-1)^j*ceil((j-1)/2))}
select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
-
ok(n)={n%2==0 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == 2*n}
select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
Original entry on oeis.org
3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, 231, 233, 239, 243, 245, 251, 261, 273, 281, 293, 299, 303, 309, 323, 329, 359, 371, 375, 393, 411, 413, 419, 429
Offset: 1
- P. R. J. Asveld, Table of n, a(n) for n=1..6706.
- P. R. J. Asveld, Permuting operations on strings and their relation to prime numbers, Discrete Applied Mathematics 159 (2011) 1915-1932.
- P. R. J. Asveld, Permuting operations on strings and the distribution of their prime numbers (2011), TR-CTIT-11-24, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Some Families of Permutations and Their Primes (2009), TR-CTIT-09-27, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Permuting Operations on Strings-Their Permutations and Their Primes, Twente University of Technology, 2014.
-
follow[s_, f_] := Module[{t, k}, t = f[s]; k = 1; While[t>s, k++; t = f[t]]; If[s == t, k, 0]];
okQ[n_] := n>1 && n == follow[1, Function[j, Ceiling[n/2] + (-1)^j*Ceiling[ (j-1)/2]]];
A163778 = Select[Range[1000], okQ] (* Jean-François Alcover, Jun 07 2018, after Andrew Howroyd *)
-
Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
ok(n)={n>1 && n==Follow(1, j->ceil(n/2) + (-1)^j*ceil((j-1)/2))}
select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
-
ok(n)={n>1 && n%2==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%4==3, n, 2*n)}
select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
Original entry on oeis.org
3, 11, 23, 35, 39, 51, 83, 95, 99, 119, 131, 135, 155, 179, 183, 191, 231, 239, 243, 251, 299, 303, 323, 359, 371, 375, 411, 419, 431, 443, 483, 491, 495, 515, 519, 531, 543, 575, 611, 615, 639, 651, 659, 683, 719, 723, 743, 755, 771, 779, 783, 791, 803, 831, 879
Offset: 1
- P. R. J. Asveld Table of n, a(n) for n=1..3378.
- P. R. J. Asveld, Permuting operations on strings and their relation to prime numbers, Discrete Applied Mathematics 159 (2011) 1915-1932.
- P. R. J. Asveld, Permuting operations on strings and the distribution of their prime numbers (2011), TR-CTIT-11-24, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Some Families of Permutations and Their Primes (2009), TR-CTIT-09-27, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Permuting Operations on Strings-Their Permutations and Their Primes, Twente University of Technology, 2014.
-
ok(n) = n%4==3 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == n;
select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
Comments