A163870 Triangle read by rows: row n lists the nontrivial divisors of the n-th composite.
2, 2, 3, 2, 4, 3, 2, 5, 2, 3, 4, 6, 2, 7, 3, 5, 2, 4, 8, 2, 3, 6, 9, 2, 4, 5, 10, 3, 7, 2, 11, 2, 3, 4, 6, 8, 12, 5, 2, 13, 3, 9, 2, 4, 7, 14, 2, 3, 5, 6, 10, 15, 2, 4, 8, 16, 3, 11, 2, 17, 5, 7, 2, 3, 4, 6, 9, 12, 18, 2, 19, 3, 13, 2, 4, 5, 8, 10, 20, 2, 3, 6, 7, 14, 21, 2, 4, 11, 22, 3, 5, 9, 15, 2, 23
Offset: 1
Examples
The table starts in row n=1 (with the composite 4) as 2; 2,3; 2,4; 3; 2,5; 2,3,4,6; 2,7; 3,5; 2,4,8; 2,3,6,9; 2,4,5,10.
Links
- Reinhard Zumkeller, Rows n = 1..1000 of table, flattened
Crossrefs
Programs
-
Haskell
a163870 n k = a163870_tabf !! (n-1) !! (k-1) a163870_row n = a163870_tabf !! (n-1) a163870_tabf = filter (not . null) $ map tail a027751_tabf -- Reinhard Zumkeller, Mar 29 2014
-
Mathematica
Divisors[Select[Range[50], CompositeQ]][[All, 2 ;; -2]] (* Paolo Xausa, Dec 26 2024 *)
-
Python
from itertools import islice def g(): n, j = 1, 2 while True: n = (n << 1) | 1 p = 1 for k in range(2, (j >> 1) + 1): p = (p << 1) | 1 if n % p == 0: yield k j+=1 print(list(islice(g(),95))) # DarĂo Clavijo, Dec 16 2024
Extensions
Entries checked by R. J. Mathar, Sep 22 2009
Comments