A163878 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 5, 20, 80, 320, 1280, 5110, 20400, 81450, 325200, 1298400, 5184000, 20697690, 82637820, 329940630, 1317324420, 5259563280, 20999387520, 83842374870, 334749945240, 1336526142210, 5336228292840, 21305481048360, 85064487085440
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,3,3,3,3,-6).
Programs
-
GAP
a:=[5,20,80,320,1280,5110];; for n in [7..30] do a[n]:=3*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -6*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-4*t+9*t^6-6*t^7) )); // G. C. Greubel, Aug 10 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-4*t+9*t^6-6*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-4*t+9*t^6-6*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 07 2017 *) coxG[{6, 6, -3}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-4*t+9*t^6-6*t^7)) \\ G. C. Greubel, Aug 07 2017
-
Sage
def A163878_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-4*t+9*t^6-6*t^7)).list() A163878_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).
a(n) = -6*a(n-6) + 3*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments