cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163894 The least i for which A163355^n(i) is not equal to i, 0 if no such i exists, i.e., when A163355^n = A001477.

Original entry on oeis.org

0, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 33, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 76, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 33, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 76, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 33, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 390, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4, 2, 33, 2, 4, 2, 4, 2, 24, 2, 4, 2, 4
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Comments

A163355^n means n-fold application of A163355, i.e., A163355^2 = A163905, A163355^3 = A163915. By convention A163355^0 = A001477.

Crossrefs

Programs

  • Maple
    A163894 := proc(n)
        local i,a355,a,itr ;
        if n = 0 then
            return 0 ;
        end if;
        a := 0 ;
        for i from 0 do
            a355 := A163355(i) ;
            for itr from 2 to n do
                a355 := A163355(a355) ;
            end do:
            if a355 <> i then
                return i ;
            end if;
        end do:
    end proc:
    seq(A163894(n),n=0..100) ; # R. J. Mathar, Nov 22 2023

A163896 Record values of A163894.

Original entry on oeis.org

0, 2, 4, 24, 33, 76, 390, 536, 1092, 6242, 17953, 137286, 143633
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

A309016 Superior 2-highly composite numbers: 3-smooth numbers (A003586) k for which there is a real number e > 0 such that d(k)/k^e >= d(j)/j^e for all 3-smooth numbers j, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 6, 12, 24, 72, 144, 288, 864, 1728, 5184, 10368, 20736, 62208, 124416, 373248, 746496, 1492992, 4478976, 8957952, 26873856, 53747712, 107495424, 322486272, 644972544, 1289945088, 3869835264, 7739670528, 23219011584, 46438023168, 92876046336, 278628139008, 557256278016
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2019

Keywords

Comments

How is this related to A163895? - R. J. Mathar, May 05 2023

Examples

			From _Michael De Vlieger_, Jul 12 2019: (Start)
We can plot all terms in A003586 with the power range 2^x with x >= 0 and 3^y with y >= 0 on the x and y axis, respectively. Plot of terms m in A309015, with terms also in a(n) placed in brackets:
                                2^x
          0    1     2     3     4     5     6     7     8
        +-----------------------------------------------------
     0  |[1]  [2]    4
     1  |     [6]  [12]  [24]   48
3^y  2  |           36   [72] [144]  [288]   576
     3  |                216   432   [864] [1728] 3456  6912 ...
          ...
Larger scale plot with "." representing a term m in A309015, and "o" representing a term in A309015 also in a(n) for all m < A002110(20).
                              2^x
        0    5   10   15   20   25   30   35   40   45  ...
        +------------------------------------------------
       0|oo.
        | ooo.
        |  .ooo.
        |   ..oo..
        |    ..ooo..
       5|      ..oo...
        |       ..ooo...
        |         ..oo....
        |          ..ooo....
        |            ..ooo....
      10|             ...oo.....
        |               ..ooo....
        |                ...oo.....
        |                  ..ooo.....
3^y     |                   ...ooo....
      15|                     ...oo.....
        |                      ...ooo.....
        |                        ...oo.....
        |                         ...ooo.....
        |                           ...oo......
      20|                            ...ooo.....
        |                              ...ooo.....
        |                               ....oo......
        |                                 ...ooo.....
        |                                  ....oo......
      25|                                    ...ooo......
        |                                     ....ooo....
        |                                       ....oo.
        |                                        ....o
        |                                          .
     ...
(End)
		

Crossrefs

Subsequence of A003586 and A309015.

Programs

  • Mathematica
    f[nn_, k_: 2] := Block[{w = {{2, 1}, {3, 0}}, s = {2}, P = 1, q = k - 2, x, i, n, f}, f[w_List] := Log[#1, (#2 + 2)/(#2 + 1)] & @@ w; x = Array[f[w[[#]] ] &, P + 1]; For[n = 2, n <= nn, n++, i = First@ FirstPosition[x, Max[x]]; AppendTo[s, w[[i, 1]]]; w[[i, 2]]++; If[And[i > P, P <= q], P++; AppendTo[w, {Prime[i + 1], 0}]; AppendTo[x, f[Last@ w]]]; x[[i]] = f@ w[[i]] ]; s]; {1}~Join~FoldList[Times, f[32, 2]] (* Michael De Vlieger, Jul 11 2019, after T. D. Noe at A000705 *)

Extensions

More terms from Michael De Vlieger, Jul 11 2019
Showing 1-3 of 3 results.