cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163920 Expansion of Sum_{k>0} k*(k+1)/2 * x^k / (1 - (-x)^k)^3.

Original entry on oeis.org

1, 0, 12, 9, 30, 0, 56, 60, 126, 0, 132, 126, 182, 0, 420, 316, 306, 0, 380, 330, 798, 0, 552, 888, 875, 0, 1296, 630, 870, 0, 992, 1536, 1914, 0, 2100, 1467, 1406, 0, 2652, 2360, 1722, 0, 1892, 1518, 4860, 0, 2256, 4872, 3234, 0, 4488, 2106, 2862, 0, 5060
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2009

Keywords

Crossrefs

Cf. A143520 (variant), A034715.

Programs

  • Mathematica
    CoefficientList[Series[Sum[((k(k+1))/2 x^k)/(1-(-x)^k)^3,{k,100}],{x,0,100}],x] (* Harvey P. Dale, May 08 2021 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, n, k*(k+1)/2 * x^k / (1 - (-x)^k)^3, x*O(x^n)), n))}

Formula

a(4n+2) = 0.
a(2n+1) = A034715(2n+1), where A034715 is the Dirichlet convolution of triangular numbers with themselves.
a(n) = (n/4) * Sum_{d|n} (-1)^(n+d) * (d+1) * (n/d+1). - Seiichi Manyama, Jul 17 2023