cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A091768 Similar to Bell numbers (A000110).

Original entry on oeis.org

1, 2, 6, 22, 92, 426, 2150, 11708, 68282, 423948, 2788230, 19341952, 141003552, 1076787624, 8589843716, 71404154928, 617151121998, 5535236798058, 51426766394244, 494145546973656, 4903432458931118, 50181840470551778, 529009041574922566
Offset: 0

Views

Author

Jon Perry, Mar 06 2004

Keywords

Comments

Equals row sums of triangle A163946. - Gary W. Adamson, Aug 06 2009

Examples

			The Bell numbers can be generated by;
1
1 2
2 3 5
5 7 10 15
where the Bell numbers are the last entry on each line. This last entry is the first entry on the next line and then the last two entries of the previous column are added, e.g. 7=5+2, 10=7+3, 15=10+5.
This version adds ALL of the entries in the previous column to the new entry.
1
1 2
2 4 6
6 10 16 22
where 10=6+2+1+1, 16=10+2+4, 22=16+6
		

Crossrefs

Close to A074664
Cf. A000110 (Bell Numbers), A033184, A000108, A163946.

Programs

  • Mathematica
    nmax=21; b = ConstantArray[0,nmax]; b[[1]]=1; Do[b[[n+1]] = Binomial[2*n, n]/(n+1) + Sum[b[[k+1]]*Binomial[2*n-k-1, n-k-1]*(k+2)/(n+1),{k,0,n-1}],{n,1,nmax-1}]; b (* Vaclav Kotesovec, Mar 13 2014 *)
  • PARI
    v=vector(20); for (i=1,20,v[i]=vector(i)); v[1][1]=1; for (i=2,20, v[i][1]=v[i-1][i-1]; for (j=2,i, v[i][j]=v[i][j-1]+sum(k=j-1,i-1,v[k][j-1]))); for (i=1,20,print1(","v[i][i]))
    
  • PARI
    a(n)=binomial(2*n,n)/(n+1)+sum(k=0,n-1,a(k)*binomial(2*n-k-1,n-k-1)*(k+2)/(n+1)) \\ Paul D. Hanna, Aug 13 2008
    
  • PARI
    a(n)=local(A=1+x*O(x^n),C=serreverse(x-x^2+x^2*O(x^n))/x); for(i=0,n,A=C+x*C^2*subst(A,x,x*C));polcoeff(A,n) \\ Paul D. Hanna, Aug 13 2008

Formula

From Paul D. Hanna, Aug 13 2008: (Start)
G.f. satisfies: (1-x)*A(x-x^2) = 1 + x*A(x).
G.f. satisfies: A(x) = C(x) + x*C(x)^2*A(x*C(x)), where C(x) is the Catalan function (A000108).
a(n) = A000108(n) + Sum_{k=0..n-1} a(k)*C(2*n-k-1,n-k-1)*(k+2)/(n+1) for n>=0; eigensequence (shift left) of the Catalan triangle A033184. (End)

Extensions

More terms from Vincenzo Librandi, Mar 15 2014
Showing 1-1 of 1 results.