cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A163946 Triangle read by rows, A033184 * A091768 (diagonalized as an infinite lower triangular matrix).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 6, 6, 14, 14, 18, 24, 22, 42, 42, 56, 84, 110, 92, 132, 132, 180, 288, 440, 552, 426, 429, 429, 594, 990, 1650, 2484, 2982, 2150, 1430, 1430, 2002, 3432, 6050, 10120, 14910, 17200, 11708, 4862, 4862, 6864, 12012, 22022, 39468, 65604, 94600, 105372, 68282
Offset: 0

Views

Author

Gary W. Adamson, Aug 06 2009

Keywords

Comments

As an eigentriangle, equals A033184 * the diagonalized version of its eigensequence. (the eigensequence of triangle A033184 = A091768).
Right border = A091768, left border = Catalan sequence A000108.
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
  1;
  1, 1;
  2, 2, 2;
  5, 5, 6, 6;
  14, 14, 18, 24, 22;
  42, 42, 56, 84, 110, 92;
  132, 132, 180, 288, 440, 552, 426;
  429, 429, 594, 990, 1650, 2484, 2982, 2150;
  1430, 1430, 2002, 3432, 6050, 10120, 14910, 17200, 11708;
  4862, 4862, 6864, 12012, 22022, 39468, 65604, 94600, 105372, 68282;
  ...
Row 3 = (5, 5, 6, 6) = (5, 5, 3, 1) * (1, 1, 2, 6); where (5, 5, 3, 1) = row 3 of triangle A033184 and (1, 1, 2, 6) = the first 3 terms of A091768 prefaced with a 1.
		

Crossrefs

Formula

Triangle read by rows, A033184 * A091768 (diagonalized such that the right border = (1, 1, 2, 6, 22, 92, 426, 2150,...) i.e. A091768 prefaced with a 1; with the rest zeros).

A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Comments

From Joerg Arndt, Jan 20 2024: (Start)
a(n) is the number of weak ascent sequences of length n.
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.
The number of length-n weak ascent sequences with maximal number of weak ascents is A000108(n).
(End)

Examples

			From _Joerg Arndt_, Jan 20 2024: (Start)
There are a(4) = 23 weak ascent sequences (dots for zeros):
   1:  [ . . . . ]
   2:  [ . . . 1 ]
   3:  [ . . . 2 ]
   4:  [ . . . 3 ]
   5:  [ . . 1 . ]
   6:  [ . . 1 1 ]
   7:  [ . . 1 2 ]
   8:  [ . . 1 3 ]
   9:  [ . . 2 . ]
  10:  [ . . 2 1 ]
  11:  [ . . 2 2 ]
  12:  [ . . 2 3 ]
  13:  [ . 1 . . ]
  14:  [ . 1 . 1 ]
  15:  [ . 1 . 2 ]
  16:  [ . 1 1 . ]
  17:  [ . 1 1 1 ]
  18:  [ . 1 1 2 ]
  19:  [ . 1 1 3 ]
  20:  [ . 1 2 . ]
  21:  [ . 1 2 1 ]
  22:  [ . 1 2 2 ]
  23:  [ . 1 2 3 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
        end:
    a:= n-> b(n, -1$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]];
    a[n_] := b[n, -1, -1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N,N,r,c,-1);  \\ memoization
    a(n,k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n,k] != -1 , return( M[n,k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) );
        M[n,k] = s;
        return( s );
    }
    for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); );
    \\ print triangle a(n,k), see A369321:
    \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print(););
    \\ Joerg Arndt, Jan 20 2024

Extensions

a(0)=1 prepended and more terms from Joerg Arndt, Jan 20 2024

A172380 Eigentriangle of Catalan triangle A033184.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 10, 6, 1, 0, 14, 36, 31, 10, 1, 0, 42, 137, 156, 75, 15, 1, 0, 132, 544, 787, 510, 155, 21, 1, 0, 429, 2235, 4017, 3331, 1380, 287, 28, 1, 0, 1430, 9445, 20809, 21405, 11411, 3255, 490, 36, 1, 0, 4862, 40876, 109486, 136921, 90665
Offset: 0

Views

Author

Paul Barry, Feb 01 2010

Keywords

Comments

Row sums are A091768.
Production matrix of inverse is matrix with general term (-1)^(n-k+1)C(k,n-k+1).
Diagonal sums are A172382. Product of A033184 and A172380 is the matrix A172381.

Examples

			Triangle begins
  1;
  0,    1;
  0,    1,    1;
  0,    2,    3,     1;
  0,    5,   10,     6,     1;
  0,   14,   36,    31,    10,     1;
  0,   42,  137,   156,    75,    15,    1;
  0,  132,  544,   787,   510,   155,   21,   1;
  0,  429, 2235,  4017,  3331,  1380,  287,  28,  1;
  0, 1430, 9445, 20809, 21405, 11411, 3255, 490, 36, 1;
Production matrix of inverse is
  0,  1;
  0, -1,  1;
  0,  0, -2,  1;
  0,  0,  1, -3,  1;
  0,  0,  0,  3, -4,   1;
  0,  0,  0, -1,  6,  -5,   1;
  0,  0,  0,  0, -4,  10,  -6,   1;
  0,  0,  0,  0,  1, -10,  15,  -7,   1;
  0,  0,  0,  0,  0,   5, -20,  21,  -8,  1;
  0,  0,  0,  0,  0,  -1,  15, -35,  28, -9,   1;
  0,  0,  0,  0,  0,   0,  -6,  35, -56, 36, -10, 1;
		

A336071 Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).

Original entry on oeis.org

1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

A336072 Number of inversion sequences avoiding the vincular pattern 2-01 (or 2-10).

Original entry on oeis.org

1, 2, 6, 24, 118, 680, 4460, 32634, 262536, 2296532
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

A181644 Eigentriangle for the Catalan triangle (c(x), xc(x)), A033184.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 22, 11, 4, 1, 1, 92, 46, 17, 5, 1, 1, 426, 213, 79, 24, 6, 1, 1, 2150, 1075, 399, 122, 32, 7, 1, 1, 11708, 5854, 2173, 665, 176, 41, 8, 1, 1, 68282, 34141, 12673, 3878, 1027, 242, 51, 9, 1, 1, 423948, 211974, 78683, 24075, 6373, 1502
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

First column is essentially A091768. Inverse of A181645.

Examples

			Triangle begins
  1,
  1, 1,
  2, 1, 1,
  6, 3, 1, 1,
  22, 11, 4, 1, 1,
  92, 46, 17, 5, 1, 1,
  426, 213, 79, 24, 6, 1, 1,
  2150, 1075, 399, 122, 32, 7, 1, 1,
  11708, 5854, 2173, 665, 176, 41, 8, 1, 1
		

Crossrefs

A125277 Eigensequence of triangle A110616: a(n) = Sum_{k=0..n-1} A110616(n-1,k)*a(k) for n>0 with a(0)=1.

Original entry on oeis.org

1, 1, 2, 7, 32, 169, 981, 6113, 40386, 280871, 2047316, 15595317, 123876270, 1024188790, 8799533250, 78443220865, 724472766347, 6922133112818, 68331103658847, 695983854400857, 7305630631254242, 78941171881894716
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2006

Keywords

Examples

			a(3) = 3*(1) + 2*(1) + 1*(2) = 7;
a(4) = 12*(1) + 7*(1) + 3*(2) + 1*(7) = 32;
a(5) = 55*(1) + 30*(1) + 12*(2) + 4*(7) + 1*(32) = 169.
Triangle A110616(n,k) = C(3*n-2*k+1, n-k)*(k+1)/(3*n-2*k+1) begins:
1;
1, 1;
3, 2, 1;
12, 7, 3, 1;
55, 30, 12, 4, 1;
273, 143, 55, 18, 5, 1;
1428, 728, 273, 88, 25, 6, 1; ...
where g.f. of column k = G001764(x)^(k+1)
and G001764(x) = 1 + x*G001764(x)^3 is the g.f. of A001764.
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(3*n-2*k-2,n-k-1)*(k+1)/(3*n-2*k-2)))}

Formula

a(n) = Sum_{k=0..n-1} a(k) * C(3*n-2*k-2,n-k-1)*(k+1)/(3*n-2*k-2) for n>0 with a(0)=1.
Showing 1-7 of 7 results.