A163953 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 9, 72, 576, 4608, 36864, 294876, 2358720, 18867492, 150921792, 1207229184, 9656672256, 77244089580, 617878417968, 4942433025684, 39534710232528, 316239654648960, 2529613056079872, 20234471292326844, 161856307428494112
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,-28).
Programs
-
GAP
a:=[9,72,576,4608,36864,294876];; for n in [7..30] do a[n]:=7*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -28*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7) )); // G. C. Greubel, Aug 10 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *) coxG[{6, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)) \\ G. C. Greubel, Aug 13 2017
-
Sage
def A163953_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)).list() A163953_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = -28*a(n-6) + 7*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments