A163955 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 11, 110, 1100, 11000, 110000, 1099945, 10998900, 109983555, 1099781100, 10997266500, 109967220000, 1099617752970, 10995633086625, 109950886704780, 1099454428128375, 10993999919042250, 109934555837535000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..995
- Index entries for linear recurrences with constant coefficients, signature (9,9,9,9,9,-45).
Programs
-
GAP
a:=[11,110,1100,11000,110000,1099945];; for n in [7..30] do a[n]:=9*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -45*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-10*t+54*t^6-45*t^7) )); // G. C. Greubel, Aug 10 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-10*t+54*t^6-45*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-10*t+54*t^6-45*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 13 2017 *) coxG[{6, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-10*t+54*t^6-45*t^7)) \\ G. C. Greubel, Aug 13 2017
-
Sage
def A163955_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-10*t+54*t^6-45*t^7)).list() A163955_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
a(n) = -45*a(n-6) + 9*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments