A163957 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 12, 132, 1452, 15972, 175692, 1932546, 21257280, 233822160, 2571956640, 28290564720, 311185670400, 3422926421970, 37650915208500, 414146038003500, 4555452101075700, 50108275682741100, 551172361422635700
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..955
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,-55).
Programs
-
GAP
a:=[12,132,1452,15972,175692,1932546];; for n in [7..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7) )); // G. C. Greubel, Aug 10 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 13 2017 *) coxG[{6, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)) \\ G. C. Greubel, Aug 13 2017
-
Sage
def A163957_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)).list() A163957_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
a(n) = -55*a(n-6) + 10*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments