A163958 Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 13, 156, 1872, 22464, 269568, 3234738, 38815920, 465779886, 5589224784, 67069091232, 804809820672, 9657486564726, 115887063443580, 1390611458122458, 16686937868633604, 200238458992414128
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..920
- Index entries for linear recurrences with constant coefficients, signature (11,11,11,11,11,-66).
Programs
-
GAP
a:=[13, 156, 1872, 22464, 269568, 3234738];; for n in [7..30] do a[n]:=11*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -66*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 11 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-12*t+77*t^6-66*t^7) )); // G. C. Greubel, Aug 11 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-12*t+77*t^6-66*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 11 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-12*t+77*t^6-66*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 13 2017 *) coxG[{6, 66, -11}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 11 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-12*t+77*t^6-66*t^7)) \\ G. C. Greubel, Aug 13 2017
-
Sage
def A163878_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-12*t+77*t^6-66*t^7)).list() A163878_list(30) # G. C. Greubel, Aug 11 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
a(n) = -66*a(n-6) + 11*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments