cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163968 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901621, 646226100, 11632014567, 209375268012, 3768736928724, 67836942598176, 1221059168656830, 21978960670333953, 395619413496128064, 7121115628832971863, 128179472668131616290, 2307219552362877498072, 41529754741525340825124
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[19, 342, 6156, 110808, 1994544, 35901621];; for n in [7..30] do a[n]:=17*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -153*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7) )); // G. C. Greubel, Aug 11 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 11 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 23 2017 *)
    coxG[{6, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 11 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7)) \\ G. C. Greubel, Aug 23 2017
    
  • Sage
    def A163968_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7)).list()
    A163968_list(30) # G. C. Greubel, Aug 11 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
a(n) = -153*a(n-6) + 17*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021