A163968 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 19, 342, 6156, 110808, 1994544, 35901621, 646226100, 11632014567, 209375268012, 3768736928724, 67836942598176, 1221059168656830, 21978960670333953, 395619413496128064, 7121115628832971863, 128179472668131616290, 2307219552362877498072, 41529754741525340825124
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..795
- Index entries for linear recurrences with constant coefficients, signature (17,17,17,17,17,-153).
Programs
-
GAP
a:=[19, 342, 6156, 110808, 1994544, 35901621];; for n in [7..30] do a[n]:=17*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -153*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 11 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7) )); // G. C. Greubel, Aug 11 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 11 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 23 2017 *) coxG[{6, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 11 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7)) \\ G. C. Greubel, Aug 23 2017
-
Sage
def A163968_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-18*t+170*t^6-153*t^7)).list() A163968_list(30) # G. C. Greubel, Aug 11 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
a(n) = -153*a(n-6) + 17*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments