cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163979 a(n) = n*(n-1) + A144437(n+2).

Original entry on oeis.org

1, 3, 5, 7, 15, 23, 31, 45, 59, 73, 93, 113, 133, 159, 185, 211, 243, 275, 307, 345, 383, 421, 465, 509, 553, 603, 653, 703, 759, 815, 871, 933, 995, 1057, 1125, 1193, 1261, 1335, 1409, 1483, 1563, 1643, 1723, 1809, 1895, 1981, 2073, 2165, 2257, 2355, 2453, 2551
Offset: 0

Views

Author

Paul Curtz, Aug 07 2009

Keywords

Comments

First differences are 2, 2, 2, 8, 8, 8, 14, 14, 14, 20, 20, 20,... (triplicated A016933).

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,3,5,7,15},60]  (* or *) CoefficientList[ Series[-(1+x+5x^4-x^3)/((1+x+x^2)(x-1)^3), {x,0,60}],x]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    x='x+O('x^50); Vec((1+x-x^3+5*x^4)/((1+x+x^2)*(1-x)^3)) \\ G. C. Greubel, Aug 24 2017

Formula

a(n) = A002378(n-1) + A144437(n+2).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
G.f.: (1 +x -x^3 +5*x^4)/( (1 +x +x^2)*(1 -x)^3 ).
E.g.f.: (1/3)*((7+3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2)). - G. C. Greubel, Aug 24 2017

Extensions

Edited and extended by R. J. Mathar, Aug 12 2009