A163995 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 26, 650, 16250, 406250, 10156250, 253905925, 6347640000, 158690797200, 3967264860000, 99181494750000, 2479534200000000, 61988275781355300, 1549704914070300000, 38742573340231207200, 968563095719204700000, 24214046448355276500000, 605350387594249537500000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..710
- Index entries for linear recurrences with constant coefficients, signature (24,24,24,24,24,-300).
Programs
-
GAP
a:=[26, 650, 16250, 406250, 10156250, 253905925];; for n in [7..30] do a[n]:=24*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -300*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-25*t+324*t^6-300*t^7) )); // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-25*t+324*t^6-300*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-25*t+324*t^6-300*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 24 2017 *) coxG[{6, 300, -24}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 13 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-25*t+324*t^6-300*t^7)) \\ G. C. Greubel, Aug 24 2017
-
Sage
def A163995_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-25*t+324*t^6-300*t^7)).list() A163995_list(30) # G. C. Greubel, Aug 13 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).
a(n) = -300*a(n-6) + 24*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments