cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A164015 5 times centered pentagonal numbers: 5*(5*n^2 + 5*n + 2)/2.

Original entry on oeis.org

5, 30, 80, 155, 255, 380, 530, 705, 905, 1130, 1380, 1655, 1955, 2280, 2630, 3005, 3405, 3830, 4280, 4755, 5255, 5780, 6330, 6905, 7505, 8130, 8780, 9455, 10155, 10880, 11630, 12405, 13205, 14030, 14880, 15755, 16655, 17580, 18530
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5(5n^2+5n+2)/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,30,80},40] (* Harvey P. Dale, Oct 08 2011 *)
  • PARI
    a(n)=25*n*(n+1)/2+5 \\ Charles R Greathouse IV, Jul 17 2011

Formula

a(n) = 5*A005891(n).
a(n) = a(n-1) + 25*n (with a(0)=5). - Vincenzo Librandi, Nov 30 2010
a(0)=5, a(1)=30, a(2)=80, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 08 2011
G.f.: (5*(x*(x+3)+1))/(1-x)^3. - Harvey P. Dale, Oct 08 2011
E.g.f.: (5/2)*(2 + 10*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 06 2017

A164016 6 times centered hexagonal numbers: 18*n*(n+1) + 6.

Original entry on oeis.org

6, 42, 114, 222, 366, 546, 762, 1014, 1302, 1626, 1986, 2382, 2814, 3282, 3786, 4326, 4902, 5514, 6162, 6846, 7566, 8322, 9114, 9942, 10806, 11706, 12642, 13614, 14622, 15666, 16746, 17862, 19014, 20202, 21426, 22686, 23982, 25314
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[18n(n+1)+6,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{6,42,114},40] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    a(n)=18*n*(n+1)+6 \\ Charles R Greathouse IV, Jul 17 2011

Formula

a(n) = A003215(n)*6.
a(n) = a(n-1) + 36*n (with a(0)=6). - Vincenzo Librandi, Nov 30 2010
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) with a(0)=6, a(1)=42, a(2)=114. - Harvey P. Dale, Dec 16 2012
From G. C. Greubel, Sep 07 2017: (Start)
G.f.: 6*(1 + 4*x + x^2)/(1 - x)^3.
E.g.f.: 6*(1 + 6*x + 3*x^2)*exp(x). (End)
Showing 1-2 of 2 results.