cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164037 Expansion of (5-9*x)/(1-6*x+7*x^2).

Original entry on oeis.org

5, 21, 91, 399, 1757, 7749, 34195, 150927, 666197, 2940693, 12980779, 57299823, 252933485, 1116502149, 4928478499, 21755355951, 96032786213, 423909225621, 1871225850235, 8259990522063, 36461362180733, 160948239429957
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A161941 without initial 2. Third binomial transform of A164095. Inverse binomial transform of A161731 without initial 1.

Crossrefs

Cf. A161941, A164095 (5, 6, 10, 12, 20, 24, ...), A161731.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(3+r)^n+(5-3*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
    
  • Mathematica
    CoefficientList[Series[(5-9x)/(1-6x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-7},{5,21},30] (* Harvey P. Dale, Apr 27 2017 *)
  • PARI
    Vec((5-9*x)/(1-6*x+7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 6*a(n-1)-7*a(n-2) for n > 1; a(0) = 5, a(1) = 21.
G.f.: (5-9*x)/(1-6*x+7*x^2).
a(n) = ((5+3*sqrt(2))*(3+sqrt(2))^n+(5-3*sqrt(2))*(3-sqrt(2))^n)/2.
E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009