cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164041 Primes of the form 2*p^2 + 4*p + 1, where p is also prime.

Original entry on oeis.org

17, 31, 71, 127, 647, 1151, 2887, 3527, 7687, 12799, 19207, 20807, 23327, 34847, 39199, 49927, 53791, 73727, 79999, 103967, 117127, 145799, 172871, 194687, 220447, 279751, 294911, 323207, 336199, 387199, 394271, 419527, 438047, 587527, 649799, 724807
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2009

Keywords

Comments

A subsequence of the primes of the form 2k^2+4k+1 = 2*(k+1)^2-1, A066436. - R. J. Mathar, Aug 10 2009

Programs

  • Magma
    [a: p in PrimesUpTo(700)|IsPrime(a) where a is 2*p^2+4*p+1 ] // Vincenzo Librandi, Sep 01 2012
    
  • Mathematica
    lst={}; Do[p=Prime@n; a=2*p^2+4*p+1; If[PrimeQ@a,AppendTo[lst,a]],{n,7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    Select[Table[2p^2+4p+1,{p,Prime[Range[200]]}],PrimeQ] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if(isprime(q=2*p^2+4*p+1), print1(q, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = 2*(A164042(n))^2 + 4*A164042(n) + 1.

Extensions

a(29) corrected by R. J. Mathar, Aug 11 2009
Edited by N. J. A. Sloane, Aug 11 2009