A164049 Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 33, 1056, 33792, 1081344, 34603008, 1107295728, 35433446400, 1133869744656, 36283814544384, 1161081512312832, 37154590694572032, 1188946335844548336, 38046264622817975040, 1217479887955809181968, 38959337855415022281984
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..660
- Index entries for linear recurrences with constant coefficients, signature (31,31,31,31,31,-496).
Programs
-
GAP
a:=[33, 1056, 33792, 1081344, 34603008, 1107295728];; for n in [7..30] do a[n]:=31*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -496*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-32*t+527*t^6-496*t^7) )); // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-32*t+527*t^6-496*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-32*t+527*t^6-496*t^7), {t, 0,30}], t] (* G. C. Greubel, Sep 08 2017 *) coxG[{6, 496, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 13 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-32*t+527*t^6-496*t^7)) \\ G. C. Greubel, Sep 08 2017
-
Sage
def A164049_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-32*t+527*t^6-496*t^7)).list() A164049_list(30) # G. C. Greubel, Aug 13 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
a(n) = -496*a(n-6) + 31*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments