cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164053 Partial sums of A162255.

Original entry on oeis.org

3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299
Offset: 1

Views

Author

Klaus Brockhaus, Aug 08 2009

Keywords

Comments

Apparently a(n) = A094958(n+4)-5.

Crossrefs

Programs

  • Magma
    T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    Accumulate[LinearRecurrence[{0,2},{3,2},50]] (* or *) LinearRecurrence[ {1,2,-2},{3,5,11},50] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017

Formula

a(n) = 2*a(n-2) + 5 for n > 2; a(1) = 3, a(2) = 5.
a(n) = (13 - 3*(-1)^n)*2^(1/4*(2*n -1 +(-1)^n))/2 - 5.
G.f.: x*(3+2*x)/(1-x-2*x^2+2*x^3).
a(1)=3, a(2)=5, a(3)=11, a(n)=a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Aug 28 2012