A164053 Partial sums of A162255.
3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -2).
Programs
-
Magma
T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Mathematica
Accumulate[LinearRecurrence[{0,2},{3,2},50]] (* or *) LinearRecurrence[ {1,2,-2},{3,5,11},50] (* Harvey P. Dale, Aug 28 2012 *)
-
PARI
x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017
Formula
a(n) = 2*a(n-2) + 5 for n > 2; a(1) = 3, a(2) = 5.
a(n) = (13 - 3*(-1)^n)*2^(1/4*(2*n -1 +(-1)^n))/2 - 5.
G.f.: x*(3+2*x)/(1-x-2*x^2+2*x^3).
a(1)=3, a(2)=5, a(3)=11, a(n)=a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Aug 28 2012
Comments